Skip to main content

Network Introduction

The Distributed Quantum Challenge​

As quantum computing matures, organizations need to orchestrate workloads across multiple quantum backends. Each backend has different characteristics, availability, and strengths. Managing this complexity manually is error-prone and inefficient.


Key Challenges​

Resource Fragmentation​

Quantum resources are scattered across different providers, each with different APIs, capabilities, and pricing.

Backend Variability​

  • IonQ: Trapped ions, all-to-all connectivity, high fidelity
  • IBM: Superconducting qubits, limited connectivity, fast gates
  • Rigetti: Superconducting, hybrid classical-quantum
  • AWS Braket: Multiple technologies, cloud access

Execution Uncertainty​

Hardware failures, calibration cycles, and maintenance windows make execution unpredictable.

Result Quality​

Different backends produce different quality results. Aggregating and reconciling these requires sophisticated techniques.


The Network Solution​

QCOS Network provides a unified abstraction over multiple quantum backends:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Your Application β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ QCOS Network β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
β”‚ β”‚ Unified Quantum API β”‚β”‚
β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”‚
β”‚ β”‚ Orchestration β”‚ Load Balancing β”‚ Failover β”‚β”‚
β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”‚
β”‚ β”‚ Backend Adapters β”‚β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ IonQ β”‚ IBM β”‚ Rigetti β”‚ AWS β”‚ ... β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Core Capabilities​

1. Multi-Backend Execution​

Execute circuits on multiple backends with a single API call:

result = network.execute(
circuit=circuit,
backends=["ionq_simulator", "ibm_brisbane", "rigetti_aspen"],
strategy="all",
shots=1024
)

for backend_result in result.results:
print(f"{backend_result.backend}: {backend_result.counts}")

2. Intelligent Load Balancing​

Four load balancing strategies:

StrategyBehavior
fastestUse the backend with lowest queue time
best_fidelityUse the backend with highest current fidelity
round_robinDistribute evenly across backends
cost_optimizedMinimize execution cost

3. Automatic Failover​

If a backend fails, jobs are automatically rerouted:

result = network.execute(
circuit=circuit,
backends=["primary_backend", "backup_backend"],
failover=True,
failover_timeout_s=30
)

4. Result Aggregation​

Combine results from multiple backends for improved accuracy:

result = network.execute(
circuit=circuit,
backends=["ionq", "ibm", "rigetti"],
strategy="all",
aggregate=True,
aggregation_method="weighted_average"
)

print(f"Aggregated counts: {result.aggregated_counts}")
print(f"Confidence: {result.aggregation_confidence}")

Architecture Components​

Orchestrator​

The central coordinator that:

  • Receives execution requests
  • Selects appropriate backends
  • Monitors execution status
  • Handles failures and retries

Backend Adapters​

Plugins that translate between QCOS Network and specific backends:

  • IonQ Adapter
  • IBM Adapter
  • Rigetti Adapter
  • AWS Braket Adapter
  • Local Simulator Adapter

Load Balancer​

Real-time decision engine considering:

  • Queue depths
  • Current calibration quality
  • Historical performance
  • Cost constraints
  • Geographic proximity

Result Aggregator​

Sophisticated result combination:

  • Weighted by fidelity
  • Outlier detection
  • Confidence scoring
  • Error mitigation

Supported Backends​

BackendTypeQubitsStatus
IonQ SimulatorSimulator29βœ… Available
IonQ AriaHardware25βœ… Available
IonQ ForteHardware32βœ… Available
IBM BrisbaneHardware127βœ… Available
IBM SherbrookeHardware127βœ… Available
Rigetti Aspen-MHardware80βœ… Available
AWS SV1Simulator34βœ… Available
Local SimulatorSimulator32βœ… Always

Network Topology​

Cloud Network​

Default topology connecting to all cloud backends via QCOS infrastructure.

Hybrid Network​

Combine cloud backends with on-premises resources:

network = QuantumNetwork(
cloud_backends=["ionq", "ibm"],
local_backends=["local_gpu_simulator"],
topology="hybrid"
)

Private Network​

Enterprise-only air-gapped network for sensitive workloads.


Use Cases​

High Availability​

Ensure workloads complete even if individual backends fail.

Performance Optimization​

Route to the fastest available backend for time-sensitive work.

Cost Optimization​

Balance quality and cost across different pricing tiers.

Research​

Execute on multiple backends for comparative studies.

Validation​

Cross-validate results by running on different technologies.


Getting Started​

Ready to leverage distributed quantum computing?

  1. Quick Start Guide - Your first distributed job
  2. API Reference - Explore the Network API
  3. Load Balancing Guide - Optimize backend selection

© 2024-2026 SoftQuantus Innovative OÜ