Skip to main content

ACOS Introduction

The Quality Assurance Challenge​

Quantum computing hardware is inherently noisy and variable. Gate fidelities change with calibration cycles, environmental conditions, and device drift. Organizations running production quantum workloads need assurance that their computations meet quality standards.


Key Challenges​

Calibration Drift​

Quantum devices require regular calibration. Between calibrations, performance can degrade unpredictably.

No Quality Guarantees​

Traditional quantum execution provides no proof of execution quality. You get results, but no indication of their reliability.

Static Optimization​

Circuits optimized for one calibration may not be optimal for the next. Manual re-optimization is impractical.

Compliance Requirements​

Regulated industries need auditable proof of computational quality.


The ACOS Solution​

ACOS addresses these challenges with three integrated components:

1. Attestation Engine​

Provides cryptographic certificates of execution quality:

{
"attestation_id": "att_abc123",
"job_id": "job_xyz789",
"backend": "ionq_aria",
"quality_score": 0.95,
"fidelity_estimate": 0.97,
"calibration_timestamp": "2026-02-06T10:00:00Z",
"signature": {
"algorithm": "ML-DSA-65",
"value": "base64:..."
}
}

2. Continuous Optimizer​

Automatically adapts circuits to current hardware conditions:

optimizer = ContinuousOptimizer()

# Uses latest calibration data
result = optimizer.optimize(
circuit=circuit,
backend="ionq_aria",
use_current_calibration=True
)

# Circuit now optimized for current device state

3. Quality Monitor​

Real-time tracking of execution quality:

monitor = QualityMonitor()

status = monitor.get_status("ionq_aria")
print(f"Current fidelity: {status.fidelity:.2%}")
print(f"Trend: {status.trend}") # 'improving', 'stable', 'degrading'

Attestation Architecture​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Attestation Flow β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”‚
β”‚ [Circuit]──>[Execution]──>[Results]──>[Attestation] β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β–Ό β–Ό β–Ό β–Ό β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Input β”‚ β”‚ Backend β”‚ β”‚ Output β”‚ β”‚ Certificate β”‚ β”‚
β”‚ β”‚ Hash β”‚ β”‚ Metrics β”‚ β”‚ Quality β”‚ β”‚ + Signature β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Quality Metrics​

ACOS tracks multiple quality dimensions:

MetricDescriptionTarget
Fidelity EstimateEstimated output fidelity>95%
Gate Error RateAggregate gate errors<0.5%
Readout ErrorMeasurement errors<1%
Circuit DepthOptimized vs original-30%
T1/T2 ComplianceDecoherence checkPass

Continuous Optimization​

The optimizer considers current calibration data:

Input​

  • Original circuit
  • Target backend
  • Current calibration

Optimization Steps​

  1. Gate Decomposition: Native gate set
  2. Topology Mapping: Qubit connectivity
  3. Error-Aware Routing: Avoid low-fidelity qubits
  4. Gate Cancellation: Remove redundancies
  5. Pulse Optimization: Hardware-level tuning

Output​

  • Optimized circuit
  • Expected improvement
  • Quality predictions

Monitoring Capabilities​

Real-Time Dashboard​

  • Current fidelity levels
  • Queue depths
  • Calibration status
  • Anomaly alerts

Historical Analysis​

  • Trend visualization
  • Performance patterns
  • Maintenance predictions

Alerting​

  • Webhook notifications
  • Email alerts
  • PagerDuty integration

Attestation Types​

TypeContentsUse Case
executionSingle job attestationStandard jobs
batchMulti-job attestationBatch processing
continuousTime-window attestationProduction systems
comparativeA/B comparison attestationOptimization validation

Integration with Other Modules​

With Evidence​

Attestations can be included in Evidence bundles:

evidence = evidence_client.generate(
job_id="job_xyz789",
include_attestation=True
)

With Network​

Attestations for distributed executions:

result = network.execute(
circuit=circuit,
backends=["ionq", "ibm"],
attestation=True
)

With NavCore​

Position attestations for critical navigation:

position = gps.get_position(
attestation=True
)

Getting Started​

Ready to add quality assurance to your quantum workloads?

  1. Quick Start Guide - Get your first attestation
  2. API Reference - Explore the ACOS API
  3. Monitoring Guide - Set up quality monitoring
  4. Benchmark Guide - Continuous benchmarking

© 2024-2026 SoftQuantus Innovative OÜ