QCOS API v2.0 - World-Class Quantum Computing Service π
Overviewβ
QCOS (Quantum Circuit Optimization Service) API v2.0 is now the most advanced quantum computing API available, combining:
- GPU-Accelerated Simulators: Up to 100 qubits on LUMI supercomputer
- Real Quantum Hardware: Azure Quantum integration (IonQ, Rigetti, Quantinuum, PASQAL)
- Advanced Optimization: Circuit optimization with multiple objectives
- Batch Processing: Execute multiple circuits in parallel
- Cost Control: Transparent cost estimation before execution
- Quantum-Enhanced Algorithms: QAQA reranking algorithm
What's New in v2.0β
π Azure Quantum Integrationβ
Access real quantum hardware from top providers:
- IonQ Aria: 29-qubit trapped-ion QPU with all-to-all connectivity
- Rigetti Aspen-M-3: 79-qubit superconducting QPU
- Quantinuum H-Series: 56-qubit trapped-ion with highest fidelity
- PASQAL Fresnel: 100-qubit neutral atom processor
β‘ Enhanced API Featuresβ
-
Circuit Optimization (
/api/v1/optimize)- Minimize depth, gate count, or maximize fidelity
- Target-specific optimization
- Automatic gate cancellation and decomposition
-
Batch Simulation (
/api/v1/batch)- Execute up to 100 circuits in parallel
- Ideal for parameter sweeps and VQE
- Priority queue support
-
Cost Estimation (
/api/v1/estimate)- Transparent pricing before execution
- Detailed cost breakdown
- Optimization recommendations
-
Circuit Analysis (
/api/v1/analyze)- Automatic complexity assessment
- Backend recommendations
- Optimization potential analysis
-
Provider Discovery (
/api/v1/providers)- Real-time availability status
- Queue times and cost information
- Feature comparison
-
Webhook Notifications (
/api/v1/webhooks)- Real-time job status updates
- HMAC-signed payloads
- Custom event filtering
-
Glass-Box API (
/api/v2/glassbox) β NEW in v3.1.0- Real-time device calibration tracking (Phase 1)
- Hardware-aware multi-objective compilation (Phase 2)
- Cryptographic evidence bundles with audit trails (Phase 3)
- QuantumLock signatures for regulatory compliance
- See GLASSBOX_API.md for full documentation
Quick Startβ
1. Authenticationβ
Get your API key from the portal:
curl https://api.softquantus.com/auth/register \
-H "Content-Type: application/json" \
-d '{"email":"you@company.com","tier":"professional"}'
Use it in requests:
export QCOS_API_KEY="sk_live_..."
2. Estimate Cost (Azure Quantum)β
Before executing on real hardware, check the cost:
curl https://api.softquantus.com/api/v1/azure_quantum/estimate \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\nh q[0];\ncx q[0], q[1];\n",
"target": "ionq.aria",
"shots": 1024
}'
Response:
{
"target": "ionq.aria",
"estimated_cost_brl": 5.58,
"estimated_cost_eur": 0.90,
"estimated_time_seconds": 310,
"breakdown": {
"aqt_used": 1.0,
"cost_per_aqt": 0.9005,
"softquantus_margin": 0.36
},
"warnings": [],
"recommendations": [
"IonQ simulator is free - use it for testing"
]
}
3. Execute on Real Quantum Hardwareβ
curl https://api.softquantus.com/api/v1/azure_quantum/execute \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\nh q[0];\ncx q[0], q[1];\n",
"target": "ionq.aria",
"shots": 1024,
"confirm_cost": true
}'
Response:
{
"job_id": "azq_a1b2c3d4e5f6",
"target": "ionq.aria",
"status": "queued",
"cost_estimate": { ... },
"message": "Job queued for execution on ionq.aria"
}
4. Optimize Circuitβ
curl https://api.softquantus.com/api/v1/optimize \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0; ...",
"objective": "min_depth",
"target_backend": "ionq",
"constraints": {
"max_depth": 50
}
}'
Response:
{
"optimized_circuit": "OPENQASM 2.0; ...",
"improvements": {
"depth_reduction": "35.5%",
"gate_reduction": "22.1%",
"estimated_fidelity_gain": 0.042
},
"optimization_time": 0.234
}
5. Batch Simulationβ
curl https://api.softquantus.com/api/v1/batch \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"experiments": [
{"circuit": "...", "backend": "aer", "shots": 1024},
{"circuit": "...", "backend": "aer_mps", "shots": 2048}
],
"parallel": true,
"priority": "high"
}'
Azure Quantum Providersβ
IonQ (Trapped Ion)β
Targets:
ionq.aria- 29 qubits, β¬0.9005/AQTionq.harmony- 11 qubits, β¬0.9005/AQTionq.simulator- 29 qubits, FREE
Features:
- All-to-all qubit connectivity
- High-fidelity gates (99.5%+)
- Native gates: RX, RY, RZ, XX
Best for: High-fidelity circuits, small qubit count
Rigetti (Superconducting)β
Targets:
rigetti.aspen-m-3- 79 qubits, β¬0.02009/10msrigetti.aspen-11- 40 qubits, β¬0.02009/10msrigetti.simulator- FREE (1000 jobs/month)
Features:
- Fast execution (<1ms gate times)
- Parametric compilation
- Quilc compiler optimization
Best for: Fast iterative algorithms, large qubit counts
Quantinuum (H-Series Trapped Ion)β
Targets:
quantinuum.h1-1- 20 qubits, subscription requiredquantinuum.h1-2- 12 qubits, subscription requiredquantinuum.h2-1- 56 qubits, premium subscriptionquantinuum.emulator- 30 qubits, free 1000 HQC/month
Features:
- Highest gate fidelity (99.9%+)
- Mid-circuit measurement
- Qubit reuse
- All-to-all connectivity
Best for: High-precision algorithms, error correction research
PASQAL (Neutral Atoms)β
Targets:
pasqal.fresnel- 100 qubits, β¬287.91/hour (QPU) or β¬14.40/hour (emulator)
Features:
- Analog quantum simulation
- Digital gate-based mode
- 2D qubit arrays
- Rydberg blockade
Best for: Quantum simulation, optimization problems, many qubits
Pricing Comparisonβ
| Provider | Model | Cost | Best Use Case |
|---|---|---|---|
| QCOS GPU | Per simulation | β¬0.05-0.50 | Development, testing, 100 qubits |
| IonQ Aria | Per AQT | β¬0.90 | High fidelity, production |
| Rigetti Aspen | Per 10ms | β¬0.02 | Fast iteration, VQE |
| Quantinuum H2 | Subscription | β¬125k/month | Enterprise, research |
| PASQAL Fresnel | Per hour | β¬287.91 | Long simulations, many qubits |
Code Examplesβ
Python SDKβ
from qcos_sdk import QCOS
# Initialize
softqcos= QCOS(api_key="sk_live_...")
# Optimize circuit
optimized = softqcos.optimize(
circuit="OPENQASM 2.0; ...",
objective="min_depth",
target_backend="ionq"
)
print(f"Depth reduced by {optimized.improvements['depth_reduction']}")
# Execute on Azure Quantum
job = softqcos.azure_quantum.execute(
circuit=optimized.circuit,
target="ionq.aria",
shots=1024,
confirm_cost=True
)
# Wait for result
result = job.wait()
print(result.counts)
JavaScript/TypeScriptβ
import { QCOS } from '@softqcos/sdk';
const softqcos= new QCOS({ apiKey: 'sk_live_...' });
// List available providers
const providers = await softqcos.azureQuantum.listProviders();
console.log(providers);
// Execute on Quantinuum
const job = await softqcos.azureQuantum.execute({
circuit: qasm,
target: 'quantinuum.h1-1',
shots: 1024,
confirmCost: true
});
console.log(`Job ID: ${job.jobId}`);
cURLβ
# List all targets
curl https://api.softquantus.com/api/v1/azure_quantum/targets \
-H "Authorization: Bearer $QCOS_API_KEY"
# Analyze circuit
curl https://api.softquantus.com/api/v1/analyze \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{"circuit":"..."}'
Advanced Featuresβ
Circuit Optimization Objectivesβ
min_depth- Minimize circuit depth for fast executionmax_fidelity- Maximize fidelity on target backendmin_gates- Minimize gate count to reduce errorsbalanced- Balance all objectives
Batch Processing with Priorityβ
{
"experiments": [...],
"parallel": true,
"priority": "high" // "low" | "normal" | "high"
}
Priority tiers:
- High: Professional/Enterprise users, executed first
- Normal: Standard execution queue
- Low: Free tier, executed when capacity available
Webhook Integrationβ
curl https://api.softquantus.com/api/v1/webhooks \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"url": "https://your-server.com/softqcos-webhook",
"events": ["job.completed", "job.failed"],
"secret": "your-webhook-secret"
}'
Webhook payload:
{
"event": "job.completed",
"job_id": "azq_abc123",
"timestamp": "2025-01-20T10:05:00Z",
"data": {
"status": "completed",
"result": { ... },
"cost": 0.90
},
"signature": "sha256=..."
}
Best Practicesβ
1. Always Estimate Cost Firstβ
Never execute on real QPU without estimating cost:
# β
Good
estimate = softqcos.estimate_cost(circuit, target="ionq.aria")
if estimate.cost_eur < 10:
job = softqcos.execute(circuit, target="ionq.aria", confirm_cost=True)
# β Bad
job = softqcos.execute(circuit, target="ionq.aria") # Could be expensive!
2. Use Simulators for Developmentβ
Test on free simulators before using QPU:
# Development
result = softqcos.execute(circuit, backend="aer_mps") # Free
# Production (after testing)
result = softqcos.azure_quantum.execute(circuit, target="ionq.aria")
3. Optimize Before Executionβ
Always optimize circuits for target backend:
# Optimize for IonQ
optimized = softqcos.optimize(circuit, target_backend="ionq", objective="max_fidelity")
# Execute optimized circuit
job = softqcos.azure_quantum.execute(optimized.circuit, target="ionq.aria")
4. Use Batch for Parameter Sweepsβ
Instead of 10 separate jobs:
# β Slow
for theta in np.linspace(0, np.pi, 10):
circuit = create_circuit(theta)
result = softqcos.execute(circuit)
# β
Fast
experiments = [{"circuit": create_circuit(theta)} for theta in np.linspace(0, np.pi, 10)]
batch = softqcos.batch(experiments, parallel=True)
Rate Limitsβ
| Tier | Daily Jobs | Monthly Budget | QPU Access |
|---|---|---|---|
| Free | 10 | β¬0 | Simulators only |
| Professional | 100 | β¬500 | All providers |
| Enterprise | Unlimited | Custom | Priority queue |
Supportβ
- Documentation: https://docs.softquantus.com
- API Reference: https://api.softquantus.com/docs
- Support: support@softquantus.com
- GitHub: https://github.com/softquantus/softqcos
Changelogβ
v2.0.0 (2025-01-20)β
- β¨ Azure Quantum integration (IonQ, Rigetti, Quantinuum, PASQAL)
- β¨ Circuit optimization API
- β¨ Batch simulation API
- β¨ Cost estimation API
- β¨ Circuit analysis API
- β¨ Webhook notifications
- β¨ Provider discovery
- π 3x faster GPU simulation
- π Enhanced QAQA reranking algorithm
- π Improved authentication and quotas
v1.0.0 (2024-11-15)β
- Initial release
- GPU-accelerated simulation (LUMI)
- Basic API endpoints
- Queue-based architecture
Licenseβ
Β© 2025 SoftQuantus. Patent Pending FR2513440.
For commercial licensing inquiries: licensing@softquantus.com