Skip to main content

QCOS API v2.0 - World-Class Quantum Computing Service πŸš€

Overview​

QCOS (Quantum Circuit Optimization Service) API v2.0 is now the most advanced quantum computing API available, combining:

  • GPU-Accelerated Simulators: Up to 100 qubits on LUMI supercomputer
  • Real Quantum Hardware: Azure Quantum integration (IonQ, Rigetti, Quantinuum, PASQAL)
  • Advanced Optimization: Circuit optimization with multiple objectives
  • Batch Processing: Execute multiple circuits in parallel
  • Cost Control: Transparent cost estimation before execution
  • Quantum-Enhanced Algorithms: QAQA reranking algorithm

What's New in v2.0​

🌐 Azure Quantum Integration​

Access real quantum hardware from top providers:

  • IonQ Aria: 29-qubit trapped-ion QPU with all-to-all connectivity
  • Rigetti Aspen-M-3: 79-qubit superconducting QPU
  • Quantinuum H-Series: 56-qubit trapped-ion with highest fidelity
  • PASQAL Fresnel: 100-qubit neutral atom processor

⚑ Enhanced API Features​

  1. Circuit Optimization (/api/v1/optimize)

    • Minimize depth, gate count, or maximize fidelity
    • Target-specific optimization
    • Automatic gate cancellation and decomposition
  2. Batch Simulation (/api/v1/batch)

    • Execute up to 100 circuits in parallel
    • Ideal for parameter sweeps and VQE
    • Priority queue support
  3. Cost Estimation (/api/v1/estimate)

    • Transparent pricing before execution
    • Detailed cost breakdown
    • Optimization recommendations
  4. Circuit Analysis (/api/v1/analyze)

    • Automatic complexity assessment
    • Backend recommendations
    • Optimization potential analysis
  5. Provider Discovery (/api/v1/providers)

    • Real-time availability status
    • Queue times and cost information
    • Feature comparison
  6. Webhook Notifications (/api/v1/webhooks)

    • Real-time job status updates
    • HMAC-signed payloads
    • Custom event filtering
  7. Glass-Box API (/api/v2/glassbox) ⭐ NEW in v3.1.0

    • Real-time device calibration tracking (Phase 1)
    • Hardware-aware multi-objective compilation (Phase 2)
    • Cryptographic evidence bundles with audit trails (Phase 3)
    • QuantumLock signatures for regulatory compliance
    • See GLASSBOX_API.md for full documentation

Quick Start​

1. Authentication​

Get your API key from the portal:

curl https://api.softquantus.com/auth/register \
-H "Content-Type: application/json" \
-d '{"email":"you@company.com","tier":"professional"}'

Use it in requests:

export QCOS_API_KEY="sk_live_..."

2. Estimate Cost (Azure Quantum)​

Before executing on real hardware, check the cost:

curl https://api.softquantus.com/api/v1/azure_quantum/estimate \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\nh q[0];\ncx q[0], q[1];\n",
"target": "ionq.aria",
"shots": 1024
}'

Response:

{
"target": "ionq.aria",
"estimated_cost_brl": 5.58,
"estimated_cost_eur": 0.90,
"estimated_time_seconds": 310,
"breakdown": {
"aqt_used": 1.0,
"cost_per_aqt": 0.9005,
"softquantus_margin": 0.36
},
"warnings": [],
"recommendations": [
"IonQ simulator is free - use it for testing"
]
}

3. Execute on Real Quantum Hardware​

curl https://api.softquantus.com/api/v1/azure_quantum/execute \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\nh q[0];\ncx q[0], q[1];\n",
"target": "ionq.aria",
"shots": 1024,
"confirm_cost": true
}'

Response:

{
"job_id": "azq_a1b2c3d4e5f6",
"target": "ionq.aria",
"status": "queued",
"cost_estimate": { ... },
"message": "Job queued for execution on ionq.aria"
}

4. Optimize Circuit​

curl https://api.softquantus.com/api/v1/optimize \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"circuit": "OPENQASM 2.0; ...",
"objective": "min_depth",
"target_backend": "ionq",
"constraints": {
"max_depth": 50
}
}'

Response:

{
"optimized_circuit": "OPENQASM 2.0; ...",
"improvements": {
"depth_reduction": "35.5%",
"gate_reduction": "22.1%",
"estimated_fidelity_gain": 0.042
},
"optimization_time": 0.234
}

5. Batch Simulation​

curl https://api.softquantus.com/api/v1/batch \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"experiments": [
{"circuit": "...", "backend": "aer", "shots": 1024},
{"circuit": "...", "backend": "aer_mps", "shots": 2048}
],
"parallel": true,
"priority": "high"
}'

Azure Quantum Providers​

IonQ (Trapped Ion)​

Targets:

  • ionq.aria - 29 qubits, €0.9005/AQT
  • ionq.harmony - 11 qubits, €0.9005/AQT
  • ionq.simulator - 29 qubits, FREE

Features:

  • All-to-all qubit connectivity
  • High-fidelity gates (99.5%+)
  • Native gates: RX, RY, RZ, XX

Best for: High-fidelity circuits, small qubit count

Rigetti (Superconducting)​

Targets:

  • rigetti.aspen-m-3 - 79 qubits, €0.02009/10ms
  • rigetti.aspen-11 - 40 qubits, €0.02009/10ms
  • rigetti.simulator - FREE (1000 jobs/month)

Features:

  • Fast execution (<1ms gate times)
  • Parametric compilation
  • Quilc compiler optimization

Best for: Fast iterative algorithms, large qubit counts

Quantinuum (H-Series Trapped Ion)​

Targets:

  • quantinuum.h1-1 - 20 qubits, subscription required
  • quantinuum.h1-2 - 12 qubits, subscription required
  • quantinuum.h2-1 - 56 qubits, premium subscription
  • quantinuum.emulator - 30 qubits, free 1000 HQC/month

Features:

  • Highest gate fidelity (99.9%+)
  • Mid-circuit measurement
  • Qubit reuse
  • All-to-all connectivity

Best for: High-precision algorithms, error correction research

PASQAL (Neutral Atoms)​

Targets:

  • pasqal.fresnel - 100 qubits, €287.91/hour (QPU) or €14.40/hour (emulator)

Features:

  • Analog quantum simulation
  • Digital gate-based mode
  • 2D qubit arrays
  • Rydberg blockade

Best for: Quantum simulation, optimization problems, many qubits


Pricing Comparison​

ProviderModelCostBest Use Case
QCOS GPUPer simulation€0.05-0.50Development, testing, 100 qubits
IonQ AriaPer AQT€0.90High fidelity, production
Rigetti AspenPer 10ms€0.02Fast iteration, VQE
Quantinuum H2Subscription€125k/monthEnterprise, research
PASQAL FresnelPer hour€287.91Long simulations, many qubits

Code Examples​

Python SDK​

from qcos_sdk import QCOS

# Initialize
softqcos= QCOS(api_key="sk_live_...")

# Optimize circuit
optimized = softqcos.optimize(
circuit="OPENQASM 2.0; ...",
objective="min_depth",
target_backend="ionq"
)

print(f"Depth reduced by {optimized.improvements['depth_reduction']}")

# Execute on Azure Quantum
job = softqcos.azure_quantum.execute(
circuit=optimized.circuit,
target="ionq.aria",
shots=1024,
confirm_cost=True
)

# Wait for result
result = job.wait()
print(result.counts)

JavaScript/TypeScript​

import { QCOS } from '@softqcos/sdk';

const softqcos= new QCOS({ apiKey: 'sk_live_...' });

// List available providers
const providers = await softqcos.azureQuantum.listProviders();
console.log(providers);

// Execute on Quantinuum
const job = await softqcos.azureQuantum.execute({
circuit: qasm,
target: 'quantinuum.h1-1',
shots: 1024,
confirmCost: true
});

console.log(`Job ID: ${job.jobId}`);

cURL​

# List all targets
curl https://api.softquantus.com/api/v1/azure_quantum/targets \
-H "Authorization: Bearer $QCOS_API_KEY"

# Analyze circuit
curl https://api.softquantus.com/api/v1/analyze \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{"circuit":"..."}'

Advanced Features​

Circuit Optimization Objectives​

  1. min_depth - Minimize circuit depth for fast execution
  2. max_fidelity - Maximize fidelity on target backend
  3. min_gates - Minimize gate count to reduce errors
  4. balanced - Balance all objectives

Batch Processing with Priority​

{
"experiments": [...],
"parallel": true,
"priority": "high" // "low" | "normal" | "high"
}

Priority tiers:

  • High: Professional/Enterprise users, executed first
  • Normal: Standard execution queue
  • Low: Free tier, executed when capacity available

Webhook Integration​

curl https://api.softquantus.com/api/v1/webhooks \
-H "Authorization: Bearer $QCOS_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"url": "https://your-server.com/softqcos-webhook",
"events": ["job.completed", "job.failed"],
"secret": "your-webhook-secret"
}'

Webhook payload:

{
"event": "job.completed",
"job_id": "azq_abc123",
"timestamp": "2025-01-20T10:05:00Z",
"data": {
"status": "completed",
"result": { ... },
"cost": 0.90
},
"signature": "sha256=..."
}

Best Practices​

1. Always Estimate Cost First​

Never execute on real QPU without estimating cost:

# βœ… Good
estimate = softqcos.estimate_cost(circuit, target="ionq.aria")
if estimate.cost_eur < 10:
job = softqcos.execute(circuit, target="ionq.aria", confirm_cost=True)

# ❌ Bad
job = softqcos.execute(circuit, target="ionq.aria") # Could be expensive!

2. Use Simulators for Development​

Test on free simulators before using QPU:

# Development
result = softqcos.execute(circuit, backend="aer_mps") # Free

# Production (after testing)
result = softqcos.azure_quantum.execute(circuit, target="ionq.aria")

3. Optimize Before Execution​

Always optimize circuits for target backend:

# Optimize for IonQ
optimized = softqcos.optimize(circuit, target_backend="ionq", objective="max_fidelity")

# Execute optimized circuit
job = softqcos.azure_quantum.execute(optimized.circuit, target="ionq.aria")

4. Use Batch for Parameter Sweeps​

Instead of 10 separate jobs:

# ❌ Slow
for theta in np.linspace(0, np.pi, 10):
circuit = create_circuit(theta)
result = softqcos.execute(circuit)

# βœ… Fast
experiments = [{"circuit": create_circuit(theta)} for theta in np.linspace(0, np.pi, 10)]
batch = softqcos.batch(experiments, parallel=True)

Rate Limits​

TierDaily JobsMonthly BudgetQPU Access
Free10€0Simulators only
Professional100€500All providers
EnterpriseUnlimitedCustomPriority queue

Support​


Changelog​

v2.0.0 (2025-01-20)​

  • ✨ Azure Quantum integration (IonQ, Rigetti, Quantinuum, PASQAL)
  • ✨ Circuit optimization API
  • ✨ Batch simulation API
  • ✨ Cost estimation API
  • ✨ Circuit analysis API
  • ✨ Webhook notifications
  • ✨ Provider discovery
  • πŸš€ 3x faster GPU simulation
  • πŸ“ˆ Enhanced QAQA reranking algorithm
  • πŸ”’ Improved authentication and quotas

v1.0.0 (2024-11-15)​

  • Initial release
  • GPU-accelerated simulation (LUMI)
  • Basic API endpoints
  • Queue-based architecture

License​

Β© 2025 SoftQuantus. Patent Pending FR2513440.

For commercial licensing inquiries: licensing@softquantus.com