Skip to main content

Introduction to QCOS Core

What is QCOS Core?

QCOS Core is the Quantum Circuit Optimization System - a production-ready platform for optimizing variational quantum algorithms (VQA) with unprecedented efficiency.

The Problem

Traditional quantum optimization approaches like VQE (Variational Quantum Eigensolver) and QAOA (Quantum Approximate Optimization Algorithm) suffer from:

  • Excessive Evaluations: Thousands of circuit evaluations needed
  • Noisy Results: Hardware noise degrades optimization quality
  • Resource Waste: Expensive quantum hardware time wasted on suboptimal configurations
  • Black Box: No visibility into optimization decisions

The QCOS Solution

QCOS Core addresses these challenges with:

CapabilityBenefit
Adaptive AutopilotsAutomatic algorithm selection based on problem scale
Surrogate ModelingReduce evaluations by 5-10x using ML surrogates
Multi-Backend OrchestrationSeamlessly switch between quantum providers
Glass-Box TransparencyFull visibility into every optimization decision
Evidence TrailCryptographic proof of computations for audit

Key Concepts

Autopilots

Autopilots are scale-specific optimization strategies:

AutopilotScaleStrategy
micro1-5 qubitsDirect optimization, exhaustive search
small6-20 qubitsGradient-based with noise mitigation
medium21-50 qubitsSurrogate-assisted Bayesian optimization
large51-100 qubitsDistributed optimization with checkpointing
hpc100+ qubitsHPC cluster optimization (LUMI/Leonardo)

Evidence System

Every optimization produces cryptographic evidence:

{
"evidence_id": "ev_abc123...",
"evidence_hash": "sha256:...",
"signature": "dilithium3:...",
"timestamp": "2026-02-06T12:00:00Z",
"backend": "ionq_simulator",
"result": { ... }
}

Backend Abstraction

QCOS abstracts quantum hardware differences:

# Same code, different backends
result_ionq = client.optimize(backend="ionq_qpu")
result_ibm = client.optimize(backend="ibm_brisbane")
result_aws = client.optimize(backend="braket_sv1")

Use Cases

1. Quantum Chemistry

Optimize molecular Hamiltonians with VQE:

from softqcos import VQEOptimizer

optimizer = VQEOptimizer(
hamiltonian=h2_hamiltonian,
ansatz="uccsd",
backend="ionq_simulator"
)
result = optimizer.run()
print(f"Ground state energy: {result.energy}")

2. Combinatorial Optimization

Solve optimization problems with QAOA:

from softqcos import QAOAOptimizer

optimizer = QAOAOptimizer(
problem=max_cut_graph,
p_layers=3,
backend="rigetti_qvm"
)
result = optimizer.run()
print(f"Best solution: {result.solution}")

3. Portfolio Optimization

Financial optimization with quantum advantage:

from softqcos import PortfolioOptimizer

optimizer = PortfolioOptimizer(
assets=portfolio_data,
risk_tolerance=0.1,
backend="quantinuum_h1"
)
result = optimizer.run()
print(f"Optimal allocation: {result.weights}")

Next Steps

  1. Quick Start - Get running in 5 minutes
  2. Installation - Detailed setup guide
  3. API Overview - REST API reference
  4. Python SDK - SDK documentation

© 2024-2026 SoftQuantus Innovative OÜ