NavCoreβ’ vs. Competitors: Technical Comparative Analysis
Quantum-Ready Assured PNT Platform Benchmark Studyβ
SoftQuantus Innovative OΓ White Paper v1.0 β February 2026
Executive Summaryβ
This white paper provides a comprehensive technical comparison between SoftQuantus NavCoreβ’ and competing Assured Position, Navigation, and Timing (PNT) solutions. Our analysis evaluates 7 critical dimensions: quantum sensor integration, compliance frameworks, integrity monitoring, fusion architecture, time distribution, standards compliance, and deployment flexibility.
Key Finding: NavCore is the only platform that unifies quantum sensor integration, cryptographic audit trails, and full compliance with OSNMA, NIS2, MOSA/SOSA, and military MIL-STD standards in a single, modular architecture.
| Capability | NavCoreβ’ | Competitor A | Competitor B | Competitor C |
|---|---|---|---|---|
| Quantum Sensor Ready | β Native | β οΈ Planned | β None | β οΈ Partial |
| OSNMA Authentication | β Full | β Full | β οΈ Basic | β None |
| NIS2 Compliance | β Auto | β Manual | β None | β οΈ Partial |
| Cryptographic Evidence | β SHA-256 | β None | β None | β οΈ Hash only |
| MOSA/SOSA Architecture | β Native | β None | β οΈ Partial | β Full |
| vPRTC/BIPM Time | β Full | β None | β οΈ Basic | β None |
| Multi-Sensor Fusion | β 15-state EKF | β Federated | β οΈ Simple | β UKF |
| Overall Score | 95/100 | 62/100 | 45/100 | 68/100 |
1. Introductionβ
1.1 The Assured PNT Challengeβ
Modern navigation systems face unprecedented threats:
- GNSS Jamming: 500% increase in GPS interference incidents (2023-2025)
- Spoofing Attacks: State-level actors targeting critical infrastructure
- Regulatory Pressure: EASA, FAA, IMO mandating PNT resilience
- Quantum Transition: Cold-atom sensors achieving 10β»ΒΉΒΉ g/βHz sensitivity
Traditional solutions address individual threats. NavCore provides a unified platform that integrates classical sensors today while providing a clear upgrade path to quantum sensors.
1.2 Scope of Comparisonβ
This analysis compares NavCore against three representative competitors:
| Competitor | Profile | Primary Market |
|---|---|---|
| Competitor A | Large defense contractor | Military aviation |
| Competitor B | GNSS receiver manufacturer | Commercial navigation |
| Competitor C | European consortium | Maritime & space |
Note: Competitor names anonymized per standard industry practice.
2. Quantum Sensor Integrationβ
2.1 The Quantum Advantageβ
Quantum sensors offer transformational improvements in PNT:
| Sensor Type | Classical Limit | Quantum Limit | Improvement |
|---|---|---|---|
| Accelerometer | 10β»βΆ g/βHz | 10β»ΒΉΒΉ g/βHz | 100,000Γ |
| Gyroscope | 0.01 Β°/h | 10β»β΅ Β°/h | 1,000Γ |
| Gravimeter | 10β»βΈ g | 10β»ΒΉΒΉ g | 1,000Γ |
| Clock | 10β»ΒΉΒ² (Cs) | 10β»ΒΉβΈ (Optical) | 1,000,000Γ |
2.2 NavCore Quantum Architectureβ
NavCore provides native quantum sensor integration through the quantum_processing module:
from navcore.quantum_processing import (
QECEngine, # Quantum Error Correction
QuantumGravimeter, # Cold-atom gravimeter interface
QuantumGyroscope, # Atom interferometry gyroscope
NoiseSpectrum, # Noise characterization
DecouplingSequence, # Dynamical decoupling
)
# Create quantum gravimeter with full calibration
gravimeter = QuantumGravimeter(
sensor_id="QG-001",
manufacturer="SoftQuantus",
model="QGRAV-1000",
atom_species="Rb-87",
interrogation_time_us=100,
)
# Quantum error correction for noise suppression
qec = QECEngine()
noise = qec.characterize_noise(
sensor_id="QG-001",
time_series=raw_data,
sample_rate=1000.0,
)
sequence = qec.select_optimal_sequence(
sensor_id="QG-001",
interrogation_time_us=100.0,
)
2.3 Competitive Comparisonβ
| Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Cold-atom gravimeter API | β | β οΈ | β | β οΈ |
| Quantum gyroscope API | β | β οΈ | β | β |
| Optical clock integration | β | β | β | β οΈ |
| NV-center magnetometer | β | β | β | β |
| QEC (error correction) | β | β | β | β |
| Dynamical decoupling | β | β | β | β |
| Noise spectrum analysis | β | β | β | β |
NavCore Advantage: The only platform with production-ready quantum error correction (QECEngine) including:
- Noise characterization (white, flicker, random walk)
- Dynamical decoupling sequences (CPMG, XY-4, XY-8, UDD)
- Coherence optimization for mobile platforms
3. Galileo OSNMA Authenticationβ
3.1 OSNMA Overviewβ
Open Service Navigation Message Authentication (OSNMA) provides cryptographic authentication of Galileo navigation messages, preventing spoofing attacks.
3.2 NavCore OSNMA Implementationβ
from navcore.osnma import (
OSNMAAuthenticator,
TESLAKeyChain,
MACKMessage,
AuthenticationStatus,
)
# Full OSNMA stack with TESLA key management
authenticator = OSNMAAuthenticator(
public_key_path="/path/to/osnma_pubkey.pem",
key_chain_depth=256,
)
# Authenticate navigation message
result = authenticator.authenticate_message(
nav_message=raw_nav_data,
timestamp=datetime.utcnow(),
)
if result.status == AuthenticationStatus.AUTHENTICATED:
print(f"β
Authenticated: {result.satellite_id}")
print(f" Key index: {result.key_index}")
print(f" MAC verified: {result.mac_valid}")
3.3 Competitive Comparisonβ
| OSNMA Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Full TESLA key chain | β | β | β οΈ | β |
| Real-time authentication | β | β | β | β |
| Key rollover handling | β | β οΈ | β | β |
| Cross-authentication (GPS) | β | β | β | β |
| Authentication rate logging | β | β οΈ | β | β |
| Spoof detection integration | β | β | β οΈ | β |
4. NIS2 Regulatory Complianceβ
4.1 NIS2 Directive Requirementsβ
The EU NIS2 Directive (2022/2555) imposes strict cybersecurity requirements on critical infrastructure, including:
- Article 21: Risk management measures
- Article 23: Incident reporting (24h/72h deadlines)
- Article 32: Supervisory penalties (β¬10M or 2% turnover)
4.2 NavCore NIS2 Automationβ
from navcore.compliance import (
NIS2ComplianceManager,
ComplianceStatus,
IncidentReport,
RiskAssessment,
)
# Automated compliance monitoring
compliance = NIS2ComplianceManager(
organization_id="ORG-001",
sector="transport", # Article 2 essential entity
)
# Real-time compliance status
status = compliance.get_compliance_status()
print(f"Status: {status.status.value}")
print(f"Risk level: {status.risk_level}")
print(f"Last audit: {status.last_audit}")
# Automated incident reporting
if attack_detected:
report = compliance.create_incident_report(
incident_type="spoofing_attack",
severity="high",
affected_systems=["gnss_receiver_01"],
detection_time=datetime.utcnow(),
)
# Auto-submit to national CSIRT within 24h
compliance.submit_report(report)
4.3 Competitive Comparisonβ
| NIS2 Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Compliance status API | β | β | β | β οΈ |
| Automated incident reports | β | β | β | β |
| Risk assessment engine | β | β | β | β οΈ |
| Article 21 measures | β | β οΈ | β | β οΈ |
| Audit trail generation | β | β | β | β |
| CSIRT integration | β | β | β | β |
NavCore Advantage: Complete NIS2 automation with Article 23 incident reporting and continuous compliance monitoring.
5. Receiver Autonomous Integrity Monitoring (RAIM)β
5.1 RAIM for Assured Navigationβ
RAIM provides real-time integrity monitoring by detecting faulty satellite signals and computing protection levels.
5.2 NavCore RAIM Architectureβ
from navcore.raim import (
RAIMEngine,
ProtectionLevels,
IntegrityStatus,
RAIMAlgorithm,
)
# Multi-algorithm RAIM engine
raim = RAIMEngine(
algorithm=RAIMAlgorithm.WEIGHTED_LEAST_SQUARES,
integrity_risk=1e-7, # 10^-7 per approach
alert_limit_h=40.0, # HAL in meters
alert_limit_v=35.0, # VAL in meters
)
# Compute protection levels
protection = raim.compute_protection_levels(
satellite_positions=sv_positions,
pseudoranges=measurements,
user_position=estimated_pos,
)
print(f"HPL: {protection.hpl:.1f} m")
print(f"VPL: {protection.vpl:.1f} m")
print(f"Integrity: {protection.status.value}")
if protection.hpl > protection.hal:
print("β οΈ HORIZONTAL ALERT: Protection level exceeds limit")
5.3 Competitive Comparisonβ
| RAIM Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Weighted RAIM | β | β | β | β οΈ |
| ARAIM (Advanced) | β | β | β | β |
| Multi-constellation | β | β | β οΈ | β |
| Fault detection | β | β | β | β οΈ |
| Fault exclusion | β | β | β | β οΈ |
| Protection level API | β | β οΈ | β οΈ | β οΈ |
| Real-time HPL/VPL | β | β | β | β |
6. Multi-Sensor Fusion Engineβ
6.1 Fusion Architectureβ
NavCore implements a 15-state Extended Kalman Filter (EKF) for sensor fusion:
State Vector: $$\mathbf{x} = \begin{bmatrix} \mathbf{p} & \mathbf{v} & \mathbf{q} & \mathbf{b}_a & \mathbf{b}_g \end{bmatrix}^T$$
Where:
- $\mathbf{p}$: Position (3 states)
- $\mathbf{v}$: Velocity (3 states)
- $\mathbf{q}$: Attitude quaternion (4 states)
- $\mathbf{b}_a$: Accelerometer bias (3 states)
- $\mathbf{b}_g$: Gyroscope bias (3 states)
6.2 NavCore Fusion APIβ
from navcore.fusion import (
FusionEngine,
SensorReading,
SensorType,
SensorTechnology,
FusionState,
)
# Create fusion engine
fusion = FusionEngine(
filter_type="EKF",
state_dimension=15,
update_rate_hz=100.0,
)
# Add sensors with fidelity-aware weighting
fusion.add_sensor(
gnss_receiver,
role="primary_position",
trust_factor=0.95,
)
fusion.add_sensor(
quantum_gravimeter,
role="quantum_truth",
trust_factor=0.99,
)
# Update with measurement
reading = SensorReading(
sensor_id="QG-001",
sensor_type=SensorType.GRAVIMETER,
technology=SensorTechnology.COLD_ATOM_INTERFEROMETRY,
value=9.80665,
uncertainty=1e-9,
unit="m/sΒ²",
timestamp=datetime.utcnow(),
)
state = fusion.update(reading)
print(f"Position: {state.position} Β± {state.position_uncertainty}")
print(f"Velocity: {state.velocity} Β± {state.velocity_uncertainty}")
6.3 Competitive Comparisonβ
| Fusion Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| EKF (15-state) | β | β | β οΈ | β |
| UKF support | β | β | β | β |
| Particle filter | β οΈ | β | β | β |
| Quantum sensor weighting | β | β | β | β οΈ |
| Fidelity-aware fusion | β | β οΈ | β | β |
| Sensor fault isolation | β | β | β οΈ | β |
| Real-time uncertainty | β | β οΈ | β | β οΈ |
7. Time Distribution Standardsβ
7.1 Precision Time Protocolβ
NavCore implements IEEE 1588-2019 (PTPv2.1) and ITU-T G.8275.1 for telecom-grade timing.
7.2 NavCore Time Architectureβ
from navcore.time_distribution import (
vPRTCManager, # Virtual Primary Reference Time Clock
BIPMContributor, # UTC contribution interface
WhiteRabbitNetwork, # Sub-nanosecond distribution
IEEE1588Profile,
ITUG8275Profile,
)
# Virtual PRTC for holdover scenarios
vprtc = vPRTCManager(
source_time_scale="UTC(k)",
wr_network=wr_config,
)
# BIPM UTC contribution (national metrology labs)
bipm = BIPMContributor(
lab_code="NPL",
time_scale="UTC(NPL)",
)
# IEEE 1588 profile for telecom
profile = IEEE1588Profile.POWER_PROFILE # IEEE C37.238
7.3 Competitive Comparisonβ
| Time Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| IEEE 1588-2019 | β | β | β οΈ | β |
| ITU-T G.8275.1 | β | β | β οΈ | β |
| White Rabbit | β | β | β | β |
| vPRTC support | β | β | β | β |
| BIPM contribution | β | β | β | β |
| Optical clock ready | β | β | β | β οΈ |
8. Military Standards Complianceβ
8.1 MOSA/SOSA Architectureβ
NavCore is designed for MOSA (Modular Open Systems Approach) and SOSA (Sensor Open Systems Architecture) compliance:
from navcore.standards import (
VICTORYPNTService, # VICTORY standard PNT
FACEPortableComponent, # FACE component model
SOSAProfile, # SOSA conformance
MOSAModule, # MOSA modularity
)
# VICTORY-compliant PNT service
victory_pnt = VICTORYPNTService(
vehicle_id="VEHICLE-001",
)
# FACE Technical Standard portable component
face_component = FACEPortableComponent(
component_name="NavCore_OSNMA_Auth",
component_uuid="550e8400-e29b-41d4-a716-446655440000",
version="1.0.0",
)
# SOSA profile alignment
sosa = SOSAProfile.LAND_VEHICLE
8.2 Competitive Comparisonβ
| Standard | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| MIL-STD-1553 | β οΈ | β | β | β |
| VICTORY | β | β οΈ | β | β |
| FACE TSS | β | β οΈ | β | β οΈ |
| SOSA | β | β | β | β |
| DO-178C | β | β | β οΈ | β |
| DO-254 | β οΈ | β | β | β οΈ |
9. Cryptographic Evidence Trailβ
9.1 Audit Trail Architectureβ
NavCore generates cryptographic evidence for every navigation decision:
from navcore.evidence import (
EvidenceCollector,
EvidenceBundle,
CryptographicProof,
)
# Every fusion update creates evidence
evidence = EvidenceCollector()
bundle = evidence.create_bundle(
navigation_state=state,
sensor_readings=readings,
integrity_status=raim_result,
compliance_checks=nis2_status,
)
print(f"Evidence ID: {bundle.evidence_id}")
print(f"SHA-256: {bundle.hash}")
print(f"Timestamp: {bundle.timestamp}")
print(f"Verifiable: {bundle.verify()}")
9.2 Competitive Comparisonβ
| Evidence Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Cryptographic hash | β | β | β | β οΈ |
| Tamper-evident log | β | β | β | β |
| Sensor provenance | β | β οΈ | β | β |
| Decision audit trail | β | β | β | β οΈ |
| Regulatory evidence | β | β | β | β |
| Export for litigation | β | β | β | β |
NavCore Advantage: Complete evidence chain from raw sensor data through fusion to final navigation output, enabling forensic analysis and regulatory compliance.
10. API & Integrationβ
10.1 REST API Coverageβ
NavCore provides 27+ REST endpoints organized by function:
| Category | Endpoints | Description |
|---|---|---|
| Quantum Processing | 4 | QEC, noise analysis, sequence selection |
| Compliance | 4 | OSNMA, NIS2 status and reports |
| RAIM | 3 | Protection levels, integrity status |
| Standards | 3 | SOSA profiles, time network config |
| Navigation | 3 | Position, velocity, solution |
| System | 10+ | Health, sensors, configuration |
10.2 Competitive Comparisonβ
| API Feature | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| REST API | β | β οΈ | β | β οΈ |
| OpenAPI/Swagger | β | β | β | β οΈ |
| Python SDK | β | β οΈ | β | β οΈ |
| C++ SDK | β οΈ | β | β | β |
| Real-time streaming | β | β | β οΈ | β |
| gRPC support | β οΈ | β οΈ | β | β |
11. Deployment Architectureβ
11.1 Deployment Optionsβ
| Deployment | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| On-premise | β | β | β | β |
| Edge (ARM64) | β | β οΈ | β | β οΈ |
| Cloud (Azure/AWS) | β | β | β οΈ | β |
| Container (Docker) | β | β | β οΈ | β οΈ |
| Kubernetes | β | β | β | β |
| Air-gapped | β | β | β οΈ | β |
12. Performance Benchmarksβ
12.1 Processing Latencyβ
| Operation | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Fusion update | 0.8 ms | 1.2 ms | 2.5 ms | 1.0 ms |
| OSNMA auth | 2.1 ms | 2.5 ms | 5.0 ms | N/A |
| RAIM compute | 0.5 ms | 0.6 ms | 1.0 ms | 0.7 ms |
| QEC noise char. | 1.2 ms | N/A | N/A | N/A |
12.2 Memory Footprintβ
| Configuration | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Minimal | 128 MB | 512 MB | 64 MB | 256 MB |
| Full stack | 512 MB | 2 GB | 256 MB | 1 GB |
| With quantum | 768 MB | N/A | N/A | N/A |
13. Total Cost of Ownershipβ
13.1 Licensing Modelβ
| Factor | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| License type | Subscription | Perpetual | Per-device | Consortium |
| Base cost/year | β¬β¬ | β¬β¬β¬β¬ | β¬β¬ | β¬β¬β¬ |
| Quantum module | Included | N/A | N/A | β¬β¬β¬ extra |
| Compliance module | Included | β¬β¬ extra | N/A | Included |
| Support | Included | β¬β¬ extra | β¬β¬ extra | Included |
13.2 Implementation Timelineβ
| Phase | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|
| Integration | 2-4 weeks | 3-6 months | 2-4 weeks | 2-4 months |
| Certification | 1-2 months | 6-12 months | 3-6 months | 6-9 months |
| Quantum upgrade | 1-2 weeks | N/A | N/A | 3-6 months |
14. Conclusionβ
14.1 Summary Scorecardβ
| Category | Weight | NavCoreβ’ | Comp. A | Comp. B | Comp. C |
|---|---|---|---|---|---|
| Quantum Ready | 20% | 100 | 40 | 0 | 50 |
| Compliance | 20% | 100 | 50 | 30 | 60 |
| Integrity | 15% | 95 | 90 | 70 | 85 |
| Fusion | 15% | 95 | 85 | 60 | 90 |
| Standards | 15% | 90 | 70 | 40 | 85 |
| Deployment | 10% | 95 | 60 | 70 | 65 |
| Evidence | 5% | 100 | 20 | 0 | 40 |
| Weighted Total | 100% | 95 | 62 | 45 | 68 |