🧬 Drug Discovery & Biotech
Accelerate molecular simulation and drug discovery with GPU-powered quantum computing.
Why QCOS for Biotech?
| Challenge | QCOS Solution |
|---|---|
| Slow molecular simulations | GPU acceleration (100x faster) |
| Limited qubit count | Up to 100 qubits for larger molecules |
| Integration complexity | Native Qiskit/OpenQASM support |
| Reproducibility | Deterministic results + audit logging |
Use Case: Molecular Ground State Energy
Calculate the ground state energy of molecules using VQE (Variational Quantum Eigensolver).
Example: H₂ Molecule
from qcos import QCOSClient
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
import numpy as np
# Initialize QCOS client
client = QCOSClient()
def create_h2_ansatz(theta: float) -> str:
"""
Create a simple ansatz for H2 molecule.
"""
return f"""
OPENQASM 2.0;
include "qelib1.inc";
qreg q[4];
creg c[4];
// Initial state preparation
x q[0];
x q[2];
// Variational form (UCCSD-inspired)
ry({theta}) q[1];
cx q[1], q[0];
cx q[1], q[2];
cx q[1], q[3];
// Measure in computational basis
measure q -> c;
"""
def vqe_optimization():
"""
Simple VQE loop to find ground state.
"""
best_energy = float('inf')
best_theta = 0
# Parameter sweep
for theta in np.linspace(-np.pi, np.pi, 50):
circuit = create_h2_ansatz(theta)
# Execute on QCOS GPU
result = client.execute(qasm=circuit, shots=4096)
# Calculate expectation value
energy = calculate_energy(result.counts)
if energy < best_energy:
best_energy = energy
best_theta = theta
print(f"θ = {theta:.3f}, E = {energy:.6f} Ha")
return best_theta, best_energy
def calculate_energy(counts: dict) -> float:
"""
Calculate energy from measurement counts.
(Simplified - real implementation uses Hamiltonian)
"""
total = sum(counts.values())
expectation = 0
for state, count in counts.items():
# Apply Hamiltonian weights
parity = sum(int(b) for b in state) % 2
expectation += (1 if parity == 0 else -1) * count
return -0.5 * (expectation / total) - 1.0
# Run optimization
optimal_theta, ground_energy = vqe_optimization()
print(f"\nOptimal θ: {optimal_theta:.4f}")
print(f"Ground state energy: {ground_energy:.6f} Ha")
print(f"Literature value: -1.137 Ha")
Use Case: Protein Folding Simulation
Quantum-inspired optimization for protein structure prediction.
from qcos import QCOSClient
import itertools
client = QCOSClient()
def create_qaoa_circuit(num_qubits: int, gamma: float, beta: float) -> str:
"""
Create QAOA circuit for protein folding optimization.
"""
qasm = f"""
OPENQASM 2.0;
include "qelib1.inc";
qreg q[{num_qubits}];
creg c[{num_qubits}];
// Initial superposition
"""
for i in range(num_qubits):
qasm += f"h q[{i}];\n"
# Cost layer (problem-specific)
qasm += f"\n// Cost layer (γ = {gamma})\n"
for i in range(num_qubits - 1):
qasm += f"cx q[{i}], q[{i+1}];\n"
qasm += f"rz({gamma}) q[{i+1}];\n"
qasm += f"cx q[{i}], q[{i+1}];\n"
# Mixer layer
qasm += f"\n// Mixer layer (β = {beta})\n"
for i in range(num_qubits):
qasm += f"rx({2*beta}) q[{i}];\n"
# Measurement
qasm += "\nmeasure q -> c;\n"
return qasm
def optimize_protein_structure():
"""
QAOA optimization for protein folding.
"""
num_qubits = 12 # Represents amino acid configurations
num_layers = 3
best_config = None
best_energy = float('inf')
# Grid search over parameters
for gamma in np.linspace(0, np.pi, 10):
for beta in np.linspace(0, np.pi, 10):
circuit = create_qaoa_circuit(num_qubits, gamma, beta)
result = client.execute(qasm=circuit, shots=2048)
# Find most likely configuration
best_state = max(result.counts, key=result.counts.get)
energy = evaluate_protein_energy(best_state)
if energy < best_energy:
best_energy = energy
best_config = best_state
print(f"New best: {best_state} (E = {energy:.4f})")
return best_config, best_energy
# Run optimization
config, energy = optimize_protein_structure()
print(f"\nOptimal configuration: {config}")
print(f"Energy: {energy:.4f}")
Use Case: Drug-Target Binding Affinity
Quantum machine learning for predicting drug binding.
from qcos import QCOSClient
import numpy as np
client = QCOSClient()
def create_qml_circuit(features: list, weights: list) -> str:
"""
Quantum variational classifier for drug binding.
"""
num_qubits = len(features)
qasm = f"""
OPENQASM 2.0;
include "qelib1.inc";
qreg q[{num_qubits}];
creg c[1];
// Feature encoding
"""
for i, f in enumerate(features):
qasm += f"ry({f}) q[{i}];\n"
qasm += f"rz({f}) q[{i}];\n"
# Entangling layer
qasm += "\n// Entangling\n"
for i in range(num_qubits - 1):
qasm += f"cx q[{i}], q[{i+1}];\n"
# Variational layer
qasm += "\n// Variational weights\n"
for i, w in enumerate(weights):
qasm += f"ry({w}) q[{i % num_qubits}];\n"
# Measure first qubit for classification
qasm += "\nmeasure q[0] -> c[0];\n"
return qasm
def predict_binding(molecule_features: list, model_weights: list) -> float:
"""
Predict binding affinity for a molecule.
"""
circuit = create_qml_circuit(molecule_features, model_weights)
result = client.execute(qasm=circuit, shots=1024)
# Calculate binding probability
ones = result.counts.get('1', 0)
zeros = result.counts.get('0', 0)
binding_probability = ones / (ones + zeros)
return binding_probability
# Example: Predict binding for candidate drug
molecule = [0.5, 1.2, 0.3, 0.8, 0.6] # Molecular descriptors
weights = [0.1, -0.3, 0.7, 0.2, -0.5, 0.4, 0.8, -0.1, 0.3, 0.6] # Trained weights
binding = predict_binding(molecule, weights)
print(f"Binding affinity: {binding:.2%}")
print(f"Recommendation: {'High potential' if binding > 0.7 else 'Low potential'}")
Batch Processing for High-Throughput Screening
Screen thousands of molecules efficiently:
from qcos import QCOSClient
import asyncio
async def screen_molecules(molecules: list[dict]) -> list[dict]:
"""
High-throughput screening of molecule candidates.
"""
async with AsyncQCOSClient() as client:
# Submit all molecules in parallel
jobs = []
for mol in molecules:
circuit = create_screening_circuit(mol['features'])
job = await client.submit(qasm=circuit, shots=1024)
jobs.append({
'molecule_id': mol['id'],
'job': job
})
# Collect results
results = []
for item in jobs:
result = await item['job'].wait()
score = calculate_score(result.counts)
results.append({
'molecule_id': item['molecule_id'],
'score': score,
'counts': result.counts
})
return sorted(results, key=lambda x: x['score'], reverse=True)
# Screen 1000 molecules
molecules = load_molecule_library() # Your molecule database
top_candidates = asyncio.run(screen_molecules(molecules[:1000]))
print("Top 10 candidates:")
for mol in top_candidates[:10]:
print(f" {mol['molecule_id']}: {mol['score']:.4f}")
Integration with Existing Tools
With RDKit
from rdkit import Chem
from rdkit.Chem import AllChem
from qcos import QCOSClient
def molecule_to_quantum_features(smiles: str) -> list[float]:
"""
Convert molecule to quantum circuit features.
"""
mol = Chem.MolFromSmiles(smiles)
# Generate molecular descriptors
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=8)
features = [float(b) * np.pi for b in fp.ToBitString()]
return features
# Example
smiles = "CC(=O)OC1=CC=CC=C1C(=O)O" # Aspirin
features = molecule_to_quantum_features(smiles)
client = QCOSClient()
circuit = create_qml_circuit(features, trained_weights)
result = client.execute(qasm=circuit, shots=2048)
With PySCF
from pyscf import gto, scf
from qcos import QCOSClient
# Define molecule in PySCF
mol = gto.Mole()
mol.atom = 'H 0 0 0; H 0 0 0.74'
mol.basis = 'sto-3g'
mol.build()
# Get Hamiltonian
mf = scf.RHF(mol)
mf.kernel()
# Convert to quantum circuit and run on QCOS
# ... (use OpenFermion or Qiskit Nature)
Performance Benchmarks
| Task | Qubits | CPU Time | QCOS GPU Time | Speedup |
|---|---|---|---|---|
| H₂ VQE | 4 | 2.3s | 0.05s | 46x |
| H₂O VQE | 8 | 45s | 0.8s | 56x |
| Protein QAOA | 16 | 5m | 3.2s | 94x |
| Drug screening (100) | 8 | 2h | 1.5m | 80x |
Getting Started
- Sign up for a Pro or Enterprise account
- Install SDK:
pip install qcos-sdk - Get API key from dashboard
- Start simulating!
# Quick test
pip install qcos-sdk
export QCOS_API_KEY="your-key"
python -c "from qcos import QCOSClient; print(QCOSClient().health())"
Resources
- Qiskit Nature - Quantum chemistry tools
- OpenFermion - Molecular simulation
- PennyLane - Quantum machine learning
Contact
Ready to accelerate your drug discovery pipeline?
Request a demo tailored to your research needs.