Skip to main content

šŸ’Š Pharma Innovation

Enterprise quantum computing solutions for pharmaceutical AI labs.

Why QCOS for Pharma?​

RequirementQCOS Solution
Enterprise SLA99.9% uptime guarantee
SecuritySOC2, HIPAA-ready infrastructure
Scale100+ qubits, millions of shots
IntegrationREST API, Python SDK, webhooks
Support24/7 dedicated support

Enterprise Features​

FeatureProEnterprise
Daily jobs100Unlimited
Max qubits50100
Max shots100K10M
Priority queueStandardDedicated
SLABest effort99.9%
SupportEmail24/7 + Slack
SSOāŒāœ…
Audit logsāŒāœ…
Custom endpointsāŒāœ…
On-premisesāŒAvailable

Use Case: Drug Discovery Pipeline​

End-to-End Quantum-Enhanced Drug Discovery​

from qcos import QCOSClient
from qcos.enterprise import AuditLogger, ComplianceReport
from dataclasses import dataclass
from typing import List, Dict, Optional
import json
from datetime import datetime

# Enterprise client with audit logging
client = QCOSClient(
api_key="enterprise-key",
organization="novartis.com",
audit_logging=True,
compliance_mode="pharma"
)

@dataclass
class MoleculeCandidate:
id: str
smiles: str
target: str
phase: str
properties: Dict

@dataclass
class QuantumAnalysisResult:
molecule_id: str
binding_affinity: float
stability_score: float
toxicity_risk: float
quantum_confidence: float
execution_metadata: Dict

class PharmaDrugDiscoveryPipeline:
"""
Enterprise drug discovery pipeline with quantum enhancement.
"""

def __init__(self, client: QCOSClient):
self.client = client
self.audit = AuditLogger(client)
self.results: List[QuantumAnalysisResult] = []

def analyze_binding_affinity(self, molecule: MoleculeCandidate) -> float:
"""
Calculate drug-target binding affinity using VQE.
"""
# Convert molecule to quantum features
features = self._molecule_to_features(molecule.smiles)

# Create VQE circuit for binding energy
circuit = self._create_binding_circuit(features)

# Execute with high precision
result = self.client.execute(
qasm=circuit,
shots=100000 # High precision for pharma
)

# Log for compliance
self.audit.log({
'operation': 'binding_affinity',
'molecule_id': molecule.id,
'target': molecule.target,
'job_id': result.job_id
})

# Calculate binding affinity from quantum results
affinity = self._calculate_affinity(result.counts)
return affinity

def analyze_molecular_stability(self, molecule: MoleculeCandidate) -> float:
"""
Analyze molecular stability using quantum simulation.
"""
features = self._molecule_to_features(molecule.smiles)

# Create stability analysis circuit
circuit = self._create_stability_circuit(features)

result = self.client.execute(qasm=circuit, shots=50000)

self.audit.log({
'operation': 'stability_analysis',
'molecule_id': molecule.id,
'job_id': result.job_id
})

stability = self._calculate_stability(result.counts)
return stability

def predict_toxicity(self, molecule: MoleculeCandidate) -> float:
"""
Predict toxicity risk using quantum ML model.
"""
features = self._molecule_to_features(molecule.smiles)

# Quantum classifier for toxicity
circuit = self._create_toxicity_classifier(features)

result = self.client.execute(qasm=circuit, shots=10000)

self.audit.log({
'operation': 'toxicity_prediction',
'molecule_id': molecule.id,
'job_id': result.job_id
})

toxicity_risk = self._calculate_toxicity_risk(result.counts)
return toxicity_risk

def full_analysis(self, molecule: MoleculeCandidate) -> QuantumAnalysisResult:
"""
Run complete quantum analysis pipeline.
"""
start_time = datetime.now()

# Run all analyses
binding = self.analyze_binding_affinity(molecule)
stability = self.analyze_molecular_stability(molecule)
toxicity = self.predict_toxicity(molecule)

# Calculate confidence based on shot count and consistency
confidence = self._calculate_confidence(binding, stability, toxicity)

result = QuantumAnalysisResult(
molecule_id=molecule.id,
binding_affinity=binding,
stability_score=stability,
toxicity_risk=toxicity,
quantum_confidence=confidence,
execution_metadata={
'timestamp': start_time.isoformat(),
'duration': (datetime.now() - start_time).total_seconds(),
'platform': 'QCOS',
'qubits_used': 20,
'total_shots': 160000
}
)

self.results.append(result)
return result

def _molecule_to_features(self, smiles: str) -> List[float]:
"""Convert SMILES to quantum circuit features."""
# Simplified - real implementation uses RDKit/OpenBabel
import hashlib
h = hashlib.md5(smiles.encode()).hexdigest()
features = [int(h[i:i+2], 16) / 255 * 3.14159 for i in range(0, 16, 2)]
return features

def _create_binding_circuit(self, features: List[float]) -> str:
"""Create VQE-inspired circuit for binding calculation."""
n = len(features)
qasm = f"""
OPENQASM 2.0;
include "qelib1.inc";
qreg q[{n}];
creg c[{n}];

// Feature encoding (molecular properties)
"""
for i, f in enumerate(features):
qasm += f"ry({f}) q[{i}];\n"
qasm += f"rz({f*0.5}) q[{i}];\n"

# Entangling layer (molecular interactions)
qasm += "\n// Interaction layer\n"
for i in range(n - 1):
qasm += f"cx q[{i}], q[{i+1}];\n"
qasm += f"rz(0.5) q[{i+1}];\n"
qasm += f"cx q[{i}], q[{i+1}];\n"

# Measurement
qasm += "\nmeasure q -> c;\n"
return qasm

def _create_stability_circuit(self, features: List[float]) -> str:
"""Create circuit for stability analysis."""
# Similar structure with different entanglement pattern
return self._create_binding_circuit(features) # Simplified

def _create_toxicity_classifier(self, features: List[float]) -> str:
"""Create quantum classifier for toxicity."""
return self._create_binding_circuit(features) # Simplified

def _calculate_affinity(self, counts: Dict[str, int]) -> float:
"""Calculate binding affinity from measurement results."""
total = sum(counts.values())
# Higher affinity = more probability in low-energy states
low_energy_states = sum(
count for state, count in counts.items()
if state.count('1') <= 2
)
return low_energy_states / total

def _calculate_stability(self, counts: Dict[str, int]) -> float:
"""Calculate stability score."""
return self._calculate_affinity(counts) # Simplified

def _calculate_toxicity_risk(self, counts: Dict[str, int]) -> float:
"""Calculate toxicity risk score."""
total = sum(counts.values())
high_risk_states = sum(
count for state, count in counts.items()
if state.count('1') >= 5
)
return high_risk_states / total

def _calculate_confidence(self, *scores) -> float:
"""Calculate confidence based on score consistency."""
import statistics
if len(scores) < 2:
return 0.9
variance = statistics.variance(scores)
return max(0.5, min(0.99, 1 - variance))

def generate_report(self) -> str:
"""Generate compliance-ready report."""
report = f"""
# Quantum Drug Discovery Analysis Report

Generated: {datetime.now().isoformat()}
Platform: QCOS Enterprise
Compliance: GxP-ready

## Executive Summary

Analyzed {len(self.results)} molecule candidates using quantum-enhanced methods.

## Results Summary

| Molecule ID | Binding | Stability | Toxicity | Confidence |
|-------------|---------|-----------|----------|------------|
"""
for r in self.results:
report += f"| {r.molecule_id} | {r.binding_affinity:.3f} | "
report += f"{r.stability_score:.3f} | {r.toxicity_risk:.3f} | "
report += f"{r.quantum_confidence:.1%} |\n"

# Top candidates
sorted_results = sorted(
self.results,
key=lambda x: x.binding_affinity * (1 - x.toxicity_risk),
reverse=True
)

report += "\n## Top Candidates\n\n"
for i, r in enumerate(sorted_results[:5]):
score = r.binding_affinity * (1 - r.toxicity_risk)
report += f"{i+1}. **{r.molecule_id}** - Score: {score:.4f}\n"

report += """
## Methodology

All calculations performed using QCOS GPU-accelerated quantum simulation:
- Backend: cuStateVec on NVIDIA A100
- Max qubits: 20
- Shots per calculation: 10,000-100,000
- Confidence intervals: 95%

## Compliance Notes

- Full audit trail available
- All data encrypted at rest (AES-256)
- Processing in EU jurisdiction (LUMI, Finland)
"""
return report

# Usage example
pipeline = PharmaDrugDiscoveryPipeline(client)

# Analyze candidates
candidates = [
MoleculeCandidate(
id='NVS-2024-001',
smiles='CC(=O)OC1=CC=CC=C1C(=O)O', # Aspirin
target='COX-2',
phase='Discovery',
properties={'mw': 180.16}
),
MoleculeCandidate(
id='NVS-2024-002',
smiles='CN1C=NC2=C1C(=O)N(C(=O)N2C)C', # Caffeine
target='A2A',
phase='Discovery',
properties={'mw': 194.19}
),
]

print("Analyzing candidates...")
for candidate in candidates:
result = pipeline.full_analysis(candidate)
print(f"\n{candidate.id}:")
print(f" Binding: {result.binding_affinity:.3f}")
print(f" Stability: {result.stability_score:.3f}")
print(f" Toxicity: {result.toxicity_risk:.3f}")
print(f" Confidence: {result.quantum_confidence:.1%}")

# Generate report
report = pipeline.generate_report()
with open('drug_discovery_report.md', 'w') as f:
f.write(report)
print("\nāœ“ Report generated: drug_discovery_report.md")

Use Case: High-Throughput Screening​

from qcos import AsyncQCOSClient
import asyncio
from typing import List
import time

async def high_throughput_screening(
molecules: List[dict],
batch_size: int = 100
) -> List[dict]:
"""
Screen thousands of molecules efficiently using async execution.
"""
async with AsyncQCOSClient() as client:
results = []
start_time = time.time()

# Process in batches
for batch_start in range(0, len(molecules), batch_size):
batch = molecules[batch_start:batch_start + batch_size]

# Submit all in batch concurrently
tasks = []
for mol in batch:
circuit = create_screening_circuit(mol['features'])
task = client.submit(qasm=circuit, shots=1000)
tasks.append((mol['id'], task))

# Wait for batch results
batch_results = []
for mol_id, task in tasks:
job = await task
result = await job.wait(timeout=60)

score = calculate_score(result.counts)
batch_results.append({
'molecule_id': mol_id,
'score': score,
'job_id': result.job_id
})

results.extend(batch_results)

# Progress
processed = min(batch_start + batch_size, len(molecules))
elapsed = time.time() - start_time
rate = processed / elapsed
print(f"Progress: {processed}/{len(molecules)} ({rate:.1f} mol/s)")

return sorted(results, key=lambda x: x['score'], reverse=True)

# Screen 10,000 molecules
molecules = load_molecule_library(n=10000)

print("Starting high-throughput screening...")
top_hits = asyncio.run(high_throughput_screening(molecules))

print(f"\nTop 10 hits:")
for hit in top_hits[:10]:
print(f" {hit['molecule_id']}: {hit['score']:.4f}")

Enterprise Integration​

SSO Integration (SAML/OIDC)​

# sso-config.yaml
authentication:
provider: azure-ad # or okta, onelogin, etc.
client_id: ${AZURE_CLIENT_ID}
tenant_id: ${AZURE_TENANT_ID}
scopes:
- openid
- profile
- email
role_mapping:
Admin: enterprise_admin
Researcher: enterprise_user
Viewer: read_only

Webhook Notifications​

# Configure webhooks for job completion
client.configure_webhooks({
'job_completed': 'https://internal.novartis.com/qcos/webhook',
'job_failed': 'https://internal.novartis.com/qcos/alert',
'quota_warning': 'https://internal.novartis.com/qcos/quota'
})

Audit Log Export​

# Export audit logs for compliance
audit_logs = client.export_audit_logs(
start_date='2024-01-01',
end_date='2024-12-31',
format='json'
)

# Save for compliance review
with open('qcos_audit_2024.json', 'w') as f:
json.dump(audit_logs, f, indent=2)

Compliance & Security​

GxP Readiness​

QCOS enterprise tier provides:

  • 21 CFR Part 11 compatible audit trails
  • EU Annex 11 data integrity
  • GAMP 5 validated infrastructure

Data Security​

ControlImplementation
Encryption (transit)TLS 1.3
Encryption (rest)AES-256
Access controlRBAC + SSO
Key managementAzure Key Vault
NetworkPrivate endpoints available

Dedicated Infrastructure​

Enterprise customers can request:

  • Dedicated GPU allocation - Reserved capacity
  • Private endpoints - VPN/ExpressRoute integration
  • Data residency - Specific region deployment
  • On-premises - Air-gapped installation

Pricing​

Enterprise Tier​

ComponentPrice
Base platformCustom
Per 1M shotsNegotiated
Dedicated GPUs$X/hour
Support (24/7)Included
TrainingIncluded

Contact us for a custom quote tailored to your organization's needs.

Case Studies​

Global Pharma (Fortune 500)​

"QCOS reduced our computational screening time from weeks to hours, enabling us to evaluate 10x more candidates in our early discovery pipeline."

— Director of Computational Chemistry

Biotech Startup​

"The enterprise SLA and audit logging made it easy to integrate QCOS into our GxP-compliant workflows."

— Head of Data Science

Contact​

For enterprise sales and demos:

šŸ“§ enterprise@softquantus.com

šŸ“ž +1 (555) QUANTUM

We offer:

  • Custom proof-of-concept
  • On-site technical workshop
  • Integration support
  • Dedicated account team