š Pharma Innovation
Enterprise quantum computing solutions for pharmaceutical AI labs.
Why QCOS for Pharma?ā
| Requirement | QCOS Solution |
|---|---|
| Enterprise SLA | 99.9% uptime guarantee |
| Security | SOC2, HIPAA-ready infrastructure |
| Scale | 100+ qubits, millions of shots |
| Integration | REST API, Python SDK, webhooks |
| Support | 24/7 dedicated support |
Enterprise Featuresā
| Feature | Pro | Enterprise |
|---|---|---|
| Daily jobs | 100 | Unlimited |
| Max qubits | 50 | 100 |
| Max shots | 100K | 10M |
| Priority queue | Standard | Dedicated |
| SLA | Best effort | 99.9% |
| Support | 24/7 + Slack | |
| SSO | ā | ā |
| Audit logs | ā | ā |
| Custom endpoints | ā | ā |
| On-premises | ā | Available |
Use Case: Drug Discovery Pipelineā
End-to-End Quantum-Enhanced Drug Discoveryā
from qcos import QCOSClient
from qcos.enterprise import AuditLogger, ComplianceReport
from dataclasses import dataclass
from typing import List, Dict, Optional
import json
from datetime import datetime
# Enterprise client with audit logging
client = QCOSClient(
api_key="enterprise-key",
organization="novartis.com",
audit_logging=True,
compliance_mode="pharma"
)
@dataclass
class MoleculeCandidate:
id: str
smiles: str
target: str
phase: str
properties: Dict
@dataclass
class QuantumAnalysisResult:
molecule_id: str
binding_affinity: float
stability_score: float
toxicity_risk: float
quantum_confidence: float
execution_metadata: Dict
class PharmaDrugDiscoveryPipeline:
"""
Enterprise drug discovery pipeline with quantum enhancement.
"""
def __init__(self, client: QCOSClient):
self.client = client
self.audit = AuditLogger(client)
self.results: List[QuantumAnalysisResult] = []
def analyze_binding_affinity(self, molecule: MoleculeCandidate) -> float:
"""
Calculate drug-target binding affinity using VQE.
"""
# Convert molecule to quantum features
features = self._molecule_to_features(molecule.smiles)
# Create VQE circuit for binding energy
circuit = self._create_binding_circuit(features)
# Execute with high precision
result = self.client.execute(
qasm=circuit,
shots=100000 # High precision for pharma
)
# Log for compliance
self.audit.log({
'operation': 'binding_affinity',
'molecule_id': molecule.id,
'target': molecule.target,
'job_id': result.job_id
})
# Calculate binding affinity from quantum results
affinity = self._calculate_affinity(result.counts)
return affinity
def analyze_molecular_stability(self, molecule: MoleculeCandidate) -> float:
"""
Analyze molecular stability using quantum simulation.
"""
features = self._molecule_to_features(molecule.smiles)
# Create stability analysis circuit
circuit = self._create_stability_circuit(features)
result = self.client.execute(qasm=circuit, shots=50000)
self.audit.log({
'operation': 'stability_analysis',
'molecule_id': molecule.id,
'job_id': result.job_id
})
stability = self._calculate_stability(result.counts)
return stability
def predict_toxicity(self, molecule: MoleculeCandidate) -> float:
"""
Predict toxicity risk using quantum ML model.
"""
features = self._molecule_to_features(molecule.smiles)
# Quantum classifier for toxicity
circuit = self._create_toxicity_classifier(features)
result = self.client.execute(qasm=circuit, shots=10000)
self.audit.log({
'operation': 'toxicity_prediction',
'molecule_id': molecule.id,
'job_id': result.job_id
})
toxicity_risk = self._calculate_toxicity_risk(result.counts)
return toxicity_risk
def full_analysis(self, molecule: MoleculeCandidate) -> QuantumAnalysisResult:
"""
Run complete quantum analysis pipeline.
"""
start_time = datetime.now()
# Run all analyses
binding = self.analyze_binding_affinity(molecule)
stability = self.analyze_molecular_stability(molecule)
toxicity = self.predict_toxicity(molecule)
# Calculate confidence based on shot count and consistency
confidence = self._calculate_confidence(binding, stability, toxicity)
result = QuantumAnalysisResult(
molecule_id=molecule.id,
binding_affinity=binding,
stability_score=stability,
toxicity_risk=toxicity,
quantum_confidence=confidence,
execution_metadata={
'timestamp': start_time.isoformat(),
'duration': (datetime.now() - start_time).total_seconds(),
'platform': 'QCOS',
'qubits_used': 20,
'total_shots': 160000
}
)
self.results.append(result)
return result
def _molecule_to_features(self, smiles: str) -> List[float]:
"""Convert SMILES to quantum circuit features."""
# Simplified - real implementation uses RDKit/OpenBabel
import hashlib
h = hashlib.md5(smiles.encode()).hexdigest()
features = [int(h[i:i+2], 16) / 255 * 3.14159 for i in range(0, 16, 2)]
return features
def _create_binding_circuit(self, features: List[float]) -> str:
"""Create VQE-inspired circuit for binding calculation."""
n = len(features)
qasm = f"""
OPENQASM 2.0;
include "qelib1.inc";
qreg q[{n}];
creg c[{n}];
// Feature encoding (molecular properties)
"""
for i, f in enumerate(features):
qasm += f"ry({f}) q[{i}];\n"
qasm += f"rz({f*0.5}) q[{i}];\n"
# Entangling layer (molecular interactions)
qasm += "\n// Interaction layer\n"
for i in range(n - 1):
qasm += f"cx q[{i}], q[{i+1}];\n"
qasm += f"rz(0.5) q[{i+1}];\n"
qasm += f"cx q[{i}], q[{i+1}];\n"
# Measurement
qasm += "\nmeasure q -> c;\n"
return qasm
def _create_stability_circuit(self, features: List[float]) -> str:
"""Create circuit for stability analysis."""
# Similar structure with different entanglement pattern
return self._create_binding_circuit(features) # Simplified
def _create_toxicity_classifier(self, features: List[float]) -> str:
"""Create quantum classifier for toxicity."""
return self._create_binding_circuit(features) # Simplified
def _calculate_affinity(self, counts: Dict[str, int]) -> float:
"""Calculate binding affinity from measurement results."""
total = sum(counts.values())
# Higher affinity = more probability in low-energy states
low_energy_states = sum(
count for state, count in counts.items()
if state.count('1') <= 2
)
return low_energy_states / total
def _calculate_stability(self, counts: Dict[str, int]) -> float:
"""Calculate stability score."""
return self._calculate_affinity(counts) # Simplified
def _calculate_toxicity_risk(self, counts: Dict[str, int]) -> float:
"""Calculate toxicity risk score."""
total = sum(counts.values())
high_risk_states = sum(
count for state, count in counts.items()
if state.count('1') >= 5
)
return high_risk_states / total
def _calculate_confidence(self, *scores) -> float:
"""Calculate confidence based on score consistency."""
import statistics
if len(scores) < 2:
return 0.9
variance = statistics.variance(scores)
return max(0.5, min(0.99, 1 - variance))
def generate_report(self) -> str:
"""Generate compliance-ready report."""
report = f"""
# Quantum Drug Discovery Analysis Report
Generated: {datetime.now().isoformat()}
Platform: QCOS Enterprise
Compliance: GxP-ready
## Executive Summary
Analyzed {len(self.results)} molecule candidates using quantum-enhanced methods.
## Results Summary
| Molecule ID | Binding | Stability | Toxicity | Confidence |
|-------------|---------|-----------|----------|------------|
"""
for r in self.results:
report += f"| {r.molecule_id} | {r.binding_affinity:.3f} | "
report += f"{r.stability_score:.3f} | {r.toxicity_risk:.3f} | "
report += f"{r.quantum_confidence:.1%} |\n"
# Top candidates
sorted_results = sorted(
self.results,
key=lambda x: x.binding_affinity * (1 - x.toxicity_risk),
reverse=True
)
report += "\n## Top Candidates\n\n"
for i, r in enumerate(sorted_results[:5]):
score = r.binding_affinity * (1 - r.toxicity_risk)
report += f"{i+1}. **{r.molecule_id}** - Score: {score:.4f}\n"
report += """
## Methodology
All calculations performed using QCOS GPU-accelerated quantum simulation:
- Backend: cuStateVec on NVIDIA A100
- Max qubits: 20
- Shots per calculation: 10,000-100,000
- Confidence intervals: 95%
## Compliance Notes
- Full audit trail available
- All data encrypted at rest (AES-256)
- Processing in EU jurisdiction (LUMI, Finland)
"""
return report
# Usage example
pipeline = PharmaDrugDiscoveryPipeline(client)
# Analyze candidates
candidates = [
MoleculeCandidate(
id='NVS-2024-001',
smiles='CC(=O)OC1=CC=CC=C1C(=O)O', # Aspirin
target='COX-2',
phase='Discovery',
properties={'mw': 180.16}
),
MoleculeCandidate(
id='NVS-2024-002',
smiles='CN1C=NC2=C1C(=O)N(C(=O)N2C)C', # Caffeine
target='A2A',
phase='Discovery',
properties={'mw': 194.19}
),
]
print("Analyzing candidates...")
for candidate in candidates:
result = pipeline.full_analysis(candidate)
print(f"\n{candidate.id}:")
print(f" Binding: {result.binding_affinity:.3f}")
print(f" Stability: {result.stability_score:.3f}")
print(f" Toxicity: {result.toxicity_risk:.3f}")
print(f" Confidence: {result.quantum_confidence:.1%}")
# Generate report
report = pipeline.generate_report()
with open('drug_discovery_report.md', 'w') as f:
f.write(report)
print("\nā Report generated: drug_discovery_report.md")
Use Case: High-Throughput Screeningā
from qcos import AsyncQCOSClient
import asyncio
from typing import List
import time
async def high_throughput_screening(
molecules: List[dict],
batch_size: int = 100
) -> List[dict]:
"""
Screen thousands of molecules efficiently using async execution.
"""
async with AsyncQCOSClient() as client:
results = []
start_time = time.time()
# Process in batches
for batch_start in range(0, len(molecules), batch_size):
batch = molecules[batch_start:batch_start + batch_size]
# Submit all in batch concurrently
tasks = []
for mol in batch:
circuit = create_screening_circuit(mol['features'])
task = client.submit(qasm=circuit, shots=1000)
tasks.append((mol['id'], task))
# Wait for batch results
batch_results = []
for mol_id, task in tasks:
job = await task
result = await job.wait(timeout=60)
score = calculate_score(result.counts)
batch_results.append({
'molecule_id': mol_id,
'score': score,
'job_id': result.job_id
})
results.extend(batch_results)
# Progress
processed = min(batch_start + batch_size, len(molecules))
elapsed = time.time() - start_time
rate = processed / elapsed
print(f"Progress: {processed}/{len(molecules)} ({rate:.1f} mol/s)")
return sorted(results, key=lambda x: x['score'], reverse=True)
# Screen 10,000 molecules
molecules = load_molecule_library(n=10000)
print("Starting high-throughput screening...")
top_hits = asyncio.run(high_throughput_screening(molecules))
print(f"\nTop 10 hits:")
for hit in top_hits[:10]:
print(f" {hit['molecule_id']}: {hit['score']:.4f}")
Enterprise Integrationā
SSO Integration (SAML/OIDC)ā
# sso-config.yaml
authentication:
provider: azure-ad # or okta, onelogin, etc.
client_id: ${AZURE_CLIENT_ID}
tenant_id: ${AZURE_TENANT_ID}
scopes:
- openid
- profile
- email
role_mapping:
Admin: enterprise_admin
Researcher: enterprise_user
Viewer: read_only
Webhook Notificationsā
# Configure webhooks for job completion
client.configure_webhooks({
'job_completed': 'https://internal.novartis.com/qcos/webhook',
'job_failed': 'https://internal.novartis.com/qcos/alert',
'quota_warning': 'https://internal.novartis.com/qcos/quota'
})
Audit Log Exportā
# Export audit logs for compliance
audit_logs = client.export_audit_logs(
start_date='2024-01-01',
end_date='2024-12-31',
format='json'
)
# Save for compliance review
with open('qcos_audit_2024.json', 'w') as f:
json.dump(audit_logs, f, indent=2)
Compliance & Securityā
GxP Readinessā
QCOS enterprise tier provides:
- 21 CFR Part 11 compatible audit trails
- EU Annex 11 data integrity
- GAMP 5 validated infrastructure
Data Securityā
| Control | Implementation |
|---|---|
| Encryption (transit) | TLS 1.3 |
| Encryption (rest) | AES-256 |
| Access control | RBAC + SSO |
| Key management | Azure Key Vault |
| Network | Private endpoints available |
Dedicated Infrastructureā
Enterprise customers can request:
- Dedicated GPU allocation - Reserved capacity
- Private endpoints - VPN/ExpressRoute integration
- Data residency - Specific region deployment
- On-premises - Air-gapped installation
Pricingā
Enterprise Tierā
| Component | Price |
|---|---|
| Base platform | Custom |
| Per 1M shots | Negotiated |
| Dedicated GPUs | $X/hour |
| Support (24/7) | Included |
| Training | Included |
Contact us for a custom quote tailored to your organization's needs.
Case Studiesā
Global Pharma (Fortune 500)ā
"QCOS reduced our computational screening time from weeks to hours, enabling us to evaluate 10x more candidates in our early discovery pipeline."
ā Director of Computational Chemistry
Biotech Startupā
"The enterprise SLA and audit logging made it easy to integrate QCOS into our GxP-compliant workflows."
ā Head of Data Science
Contactā
For enterprise sales and demos:
š§ enterprise@softquantus.com
š +1 (555) QUANTUM
We offer:
- Custom proof-of-concept
- On-site technical workshop
- Integration support
- Dedicated account team