QCOS Core
Quantum Circuit Optimization System
Overviewβ
QCOS Core is a production-ready quantum circuit optimization system achieving 5-10x fewer evaluations than standard VQE/QAOA algorithms.
Key Featuresβ
| Feature | Description |
|---|---|
| Autopilot Optimization | Automatic algorithm selection based on problem scale |
| Multi-Backend Support | IonQ, Quantinuum, IBM, Rigetti, AWS Braket, Azure Quantum |
| Glass-Box Transparency | Full visibility into optimization decisions |
| Evidence Trail | Cryptographic proof of every computation |
Performance Benchmarksβ
| Problem | Qubits | QCOS Evals | Standard VQE | Speedup |
|---|---|---|---|---|
| GHZ-10 | 10 | ~150 | ~800 | 5.3x |
| GHZ-50 | 50 | ~200 | ~2000+ | 10x+ |
| GHZ-100 | 100 | ~250 | ~5000+ | 20x+ |
Quick Navigationβ
| Section | Description |
|---|---|
| Introduction | What is QCOS Core and why use it |
| Quick Start | Get running in 5 minutes |
| API Reference | REST API documentation |
| CLI Reference | Command-line interface |
| SDK Reference | Python SDK |
| Guides | Installation & configuration |
| Concepts | Architecture deep-dive |
| Changelog | Release notes |
Architectureβ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β QCOS Core Engine β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Autopilot β β Optimizer β β Evidence β β
β β Selection ββββ Engine ββββ Generator β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β β β β
β βΌ βΌ βΌ β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Backend Abstraction β β
β β IonQ β Quantinuum β IBM β Rigetti β Braket β Aer β β
β βββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Getting Startedβ
Installationβ
pip install softqcos
Quick Exampleβ
from softqcos import QCOSClient
# Connect to QCOS
client = QCOSClient(api_key="your-api-key")
# Optimize a circuit
result = client.optimize(
qasm="OPENQASM 2.0; ...",
backend="ionq_simulator",
shots=1024
)
print(f"Optimized depth: {result.optimized_depth}")
print(f"Evidence ID: {result.evidence_id}")
Supportβ
- API Status: https://status.softquantus.com
- Documentation: https://docs.softquantus.com
- Support: support@softquantus.com
Β© 2024-2026 SoftQuantus Innovative OΓ