SynapseX Integration
SynapseX is Softquantus's AI platform that seamlessly integrates with QCOS to provide AI-assisted quantum computing capabilities. This guide covers how to leverage LLM + Quantum hybrid workflows.
Overviewβ
SynapseX + QCOS enables:
- Natural Language Circuit Generation - Describe circuits in plain English
- AI-Powered Optimization Suggestions - Get recommendations for improving circuits
- Automated Error Analysis - Understand and mitigate quantum errors
- Result Interpretation - Get human-readable explanations of quantum results
- Hybrid Workflows - Combine classical AI with quantum computing
Architectureβ
βββββββββββββββββββββββββββββββββββββββ ββββββββββββββββββββββββββββ
β SynapseX + QCOS Integration β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββββββββββ βββββββββββββββββββββββββββββββββββββ β
β β SynapseX AI β β QCOS Platform β β
β β ββββββββββββββ β β ββββββββββββ ββββββββββββββββ β β
β β β LLM ββββΌβββββΌββΊβ Circuit β β Quantum β β β
β β β (GPT-4o) β β β β Optimizerβ β Backends β β β
β β ββββββββββββββ β β ββββββββββββ ββββββββββββββββ β β
β β ββββββββββββββ β β ββββββββββββ ββββββββββββββββ β β
β β β Quantum β β β β API β β HPC β β β
β β β Advisor β β β β Server β β Simulator β β β
β β ββββββββββββββ β β ββββββββββββ ββββββββββββββββ β β
β ββββββββββββββββββββ βββββββββββββββββββββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Getting Startedβ
Prerequisitesβ
- QCOS account (Pro plan or higher)
- SynapseX enabled on your account
softqcos-sdk[synapsex]installed
Installationβ
pip install softqcos-sdk[synapsex]
Enable SynapseXβ
import softqcos
from softqcos.synapsex import SynapseXClient
# Initialize with SynapseX enabled
client = softqcos.QCOSClient()
synapsex = SynapseXClient(qcos_client=client)
Natural Language Circuit Generationβ
Generate quantum circuits from natural language descriptions.
generate_circuit()β
circuit = synapsex.generate_circuit(
description: str,
num_qubits: int = None,
target_backend: str = None
) -> QuantumCircuit
Examplesβ
# Simple Bell state
circuit = synapsex.generate_circuit(
"Create a Bell state between two qubits"
)
# GHZ state with specific size
circuit = synapsex.generate_circuit(
"Create a 5-qubit GHZ state",
num_qubits=5
)
# Algorithm-specific
circuit = synapsex.generate_circuit(
"Implement Grover's algorithm to search for state |101β© in 3 qubits",
target_backend="ibm_brisbane"
)
# VQE ansatz
circuit = synapsex.generate_circuit(
"Create a hardware-efficient ansatz for VQE with 4 qubits and 2 layers"
)
With Parametersβ
# Parameterized circuit
circuit, params = synapsex.generate_circuit(
"Create a variational quantum eigensolver ansatz for H2 molecule",
return_parameters=True
)
print(f"Generated circuit with {len(params)} parameters")
Circuit Optimization Suggestionsβ
Get AI-powered recommendations for circuit improvements.
suggest_optimizations()β
suggestions = synapsex.suggest_optimizations(
circuit: QuantumCircuit,
target_backend: str = None,
optimization_goal: str = "depth" # "depth", "fidelity", "gate_count"
) -> List[Suggestion]
Exampleβ
circuit = QuantumCircuit(4, 4)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.cx(2, 3)
circuit.barrier()
circuit.ry(0.5, 0)
circuit.ry(0.5, 1)
circuit.measure_all()
suggestions = synapsex.suggest_optimizations(
circuit,
target_backend="ibm_brisbane",
optimization_goal="fidelity"
)
for s in suggestions:
print(f"Suggestion: {s.title}")
print(f"Description: {s.description}")
print(f"Expected improvement: {s.improvement_percent}%")
print(f"Confidence: {s.confidence}")
print("---")
Output:
Suggestion: Parallelize single-qubit gates
Description: The RY gates on qubits 0 and 1 can be executed simultaneously
Expected improvement: 15%
Confidence: high
---
Suggestion: Use native gate decomposition
Description: Replace CX chain with optimized ZZ interactions for IBM hardware
Expected improvement: 25%
Confidence: medium
---
Apply Suggestionsβ
# Apply a specific suggestion
optimized = synapsex.apply_suggestion(circuit, suggestions[0])
# Apply all high-confidence suggestions
optimized = synapsex.apply_all_suggestions(
circuit,
suggestions,
min_confidence="high"
)
Error Analysisβ
Analyze quantum execution errors and get mitigation strategies.
analyze_errors()β
analysis = synapsex.analyze_errors(
circuit: QuantumCircuit,
result: Result,
backend: str = None
) -> ErrorAnalysis
Exampleβ
# Run circuit
job = client.run(circuit, backend="ibm_brisbane", shots=10000)
result = job.result()
# Analyze errors
analysis = synapsex.analyze_errors(
circuit,
result,
backend="ibm_brisbane"
)
print(f"Estimated fidelity: {analysis.estimated_fidelity}")
print(f"Dominant error: {analysis.dominant_error_type}")
print(f"Explanation: {analysis.explanation}")
for mitigation in analysis.mitigations:
print(f"Mitigation: {mitigation.strategy}")
print(f"Expected improvement: {mitigation.improvement}")
Output:
Estimated fidelity: 0.87
Dominant error: readout
Explanation: The circuit shows significant readout errors on qubits 2 and 3,
likely due to state leakage. The CNOT chain creates an entangled state that
is susceptible to T1 decay during the final measurement.
Mitigation: Readout error mitigation
Expected improvement: 5-8%
Mitigation: Dynamical decoupling
Expected improvement: 3-5%
Apply Error Mitigationβ
# Apply recommended mitigation
mitigated_result = synapsex.apply_error_mitigation(
circuit,
result,
strategy="readout_correction"
)
print(f"Original counts: {result.counts}")
print(f"Mitigated counts: {mitigated_result.counts}")
Result Interpretationβ
Get human-readable explanations of quantum results.
interpret_results()β
interpretation = synapsex.interpret_results(
circuit: QuantumCircuit,
result: Result,
context: str = None
) -> Interpretation
Exampleβ
# Bell state measurement
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure_all()
job = client.run(circuit, backend="ibm_brisbane", shots=1000)
result = job.result()
interpretation = synapsex.interpret_results(
circuit,
result,
context="I'm trying to create and verify quantum entanglement"
)
print(interpretation.summary)
print("\nDetailed explanation:")
print(interpretation.detailed)
Output:
Summary: The circuit successfully created a Bell state with 95% fidelity.
The results show strong correlation between qubits.
Detailed explanation:
Your circuit creates the Bell state |Ξ¦+β© = (|00β© + |11β©)/β2. The measurement
results show:
- |00β©: 48.5% (expected: 50%)
- |11β©: 49.2% (expected: 50%)
- |01β©: 1.2% (error)
- |10β©: 1.1% (error)
The high correlation (97.7% in {00, 11}) confirms quantum entanglement.
The small percentage in |01β© and |10β© represents hardware noise.
This is consistent with typical IBM Quantum performance.
Hybrid Quantum-Classical Workflowsβ
Combine SynapseX AI with QCOS quantum execution.
Example: AI-Guided VQEβ
from softqcos.algorithms import VQE
from softqcos.synapsex import QuantumAdvisor
# Initialize advisor
advisor = QuantumAdvisor(synapsex)
# Define problem
problem = "Find the ground state energy of H2 at bond length 0.74 Γ
"
# Get AI recommendations
recommendations = advisor.recommend_approach(problem)
print(f"Recommended algorithm: {recommendations.algorithm}")
print(f"Recommended backend: {recommendations.backend}")
print(f"Estimated shots needed: {recommendations.shots}")
# Generate optimized ansatz
ansatz = synapsex.generate_circuit(
f"Create an optimal VQE ansatz for {problem}",
target_backend=recommendations.backend
)
# Run VQE
vqe = VQE(
ansatz=ansatz,
optimizer="COBYLA",
backend=recommendations.backend,
shots=recommendations.shots
)
result = vqe.run(client)
# Interpret results
interpretation = synapsex.interpret_results(
ansatz,
result,
context=problem
)
print(f"\nGround state energy: {result.eigenvalue}")
print(f"\nInterpretation: {interpretation.summary}")
Example: Iterative Circuit Designβ
# Start with a description
description = "Create a quantum circuit for portfolio optimization with 4 assets"
# Generate initial circuit
circuit = synapsex.generate_circuit(description)
# Iterative refinement loop
for iteration in range(3):
# Simulate
result = client.simulate(circuit, shots=10000)
# Analyze
analysis = synapsex.analyze_errors(circuit, result, "ibm_brisbane")
# Get suggestions
suggestions = synapsex.suggest_optimizations(
circuit,
target_backend="ibm_brisbane",
optimization_goal="fidelity"
)
if not suggestions or analysis.estimated_fidelity > 0.95:
break
# Apply best suggestion
circuit = synapsex.apply_suggestion(circuit, suggestions[0])
print(f"Iteration {iteration + 1}: Fidelity = {analysis.estimated_fidelity}")
print("Final circuit ready for quantum execution")
Chat Interfaceβ
Interactive chat for quantum computing assistance.
Example: Jupyter Integrationβ
from softqcos.synapsex import QuantumChat
chat = QuantumChat(synapsex)
# Interactive session
response = chat.ask("What's the best way to implement quantum phase estimation?")
print(response.text)
# With context
response = chat.ask(
"How can I improve this circuit's fidelity?",
context={"circuit": my_circuit, "backend": "ibm_brisbane"}
)
print(response.text)
# Generate code
response = chat.ask("Show me code for a 3-qubit Toffoli gate")
print(response.code)
API Referenceβ
SynapseXClientβ
class SynapseXClient:
def __init__(self, qcos_client: QCOSClient)
def generate_circuit(
self,
description: str,
num_qubits: int = None,
target_backend: str = None,
return_parameters: bool = False
) -> QuantumCircuit
def suggest_optimizations(
self,
circuit: QuantumCircuit,
target_backend: str = None,
optimization_goal: str = "depth"
) -> List[Suggestion]
def analyze_errors(
self,
circuit: QuantumCircuit,
result: Result,
backend: str = None
) -> ErrorAnalysis
def interpret_results(
self,
circuit: QuantumCircuit,
result: Result,
context: str = None
) -> Interpretation
Plan Requirementsβ
| Feature | Free | Pro | Hybrid | Enterprise |
|---|---|---|---|---|
| Circuit Generation | β | β Basic | β Full | β Full |
| Optimization Suggestions | β | 10/day | Unlimited | Unlimited |
| Error Analysis | β | β | β | β |
| Result Interpretation | β | β | β | β |
| Custom Fine-tuning | β | β | β | β |
Next Stepsβ
- π QCOS Quickstart - Get started with QCOS
- π‘ Circuit Optimization - Manual optimization techniques
- π¬ Backends - Choose the right quantum hardware