Skip to main content

SynapseX Integration

SynapseX is Softquantus's AI platform that seamlessly integrates with QCOS to provide AI-assisted quantum computing capabilities. This guide covers how to leverage LLM + Quantum hybrid workflows.

Overview​

SynapseX + QCOS enables:

  • Natural Language Circuit Generation - Describe circuits in plain English
  • AI-Powered Optimization Suggestions - Get recommendations for improving circuits
  • Automated Error Analysis - Understand and mitigate quantum errors
  • Result Interpretation - Get human-readable explanations of quantum results
  • Hybrid Workflows - Combine classical AI with quantum computing

Architecture​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ SynapseX + QCOS Integration β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ SynapseX AI β”‚ β”‚ QCOS Platform β”‚ β”‚
β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚
β”‚ β”‚ β”‚ LLM │◄─┼────┼─►│ Circuit β”‚ β”‚ Quantum β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ (GPT-4o) β”‚ β”‚ β”‚ β”‚ Optimizerβ”‚ β”‚ Backends β”‚ β”‚ β”‚
β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚
β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚
β”‚ β”‚ β”‚ Quantum β”‚ β”‚ β”‚ β”‚ API β”‚ β”‚ HPC β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ Advisor β”‚ β”‚ β”‚ β”‚ Server β”‚ β”‚ Simulator β”‚ β”‚ β”‚
β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Getting Started​

Prerequisites​

  • QCOS account (Pro plan or higher)
  • SynapseX enabled on your account
  • softqcos-sdk[synapsex] installed

Installation​

pip install softqcos-sdk[synapsex]

Enable SynapseX​

import softqcos
from softqcos.synapsex import SynapseXClient

# Initialize with SynapseX enabled
client = softqcos.QCOSClient()
synapsex = SynapseXClient(qcos_client=client)

Natural Language Circuit Generation​

Generate quantum circuits from natural language descriptions.

generate_circuit()​

circuit = synapsex.generate_circuit(
description: str,
num_qubits: int = None,
target_backend: str = None
) -> QuantumCircuit

Examples​

# Simple Bell state
circuit = synapsex.generate_circuit(
"Create a Bell state between two qubits"
)

# GHZ state with specific size
circuit = synapsex.generate_circuit(
"Create a 5-qubit GHZ state",
num_qubits=5
)

# Algorithm-specific
circuit = synapsex.generate_circuit(
"Implement Grover's algorithm to search for state |101⟩ in 3 qubits",
target_backend="ibm_brisbane"
)

# VQE ansatz
circuit = synapsex.generate_circuit(
"Create a hardware-efficient ansatz for VQE with 4 qubits and 2 layers"
)

With Parameters​

# Parameterized circuit
circuit, params = synapsex.generate_circuit(
"Create a variational quantum eigensolver ansatz for H2 molecule",
return_parameters=True
)

print(f"Generated circuit with {len(params)} parameters")

Circuit Optimization Suggestions​

Get AI-powered recommendations for circuit improvements.

suggest_optimizations()​

suggestions = synapsex.suggest_optimizations(
circuit: QuantumCircuit,
target_backend: str = None,
optimization_goal: str = "depth" # "depth", "fidelity", "gate_count"
) -> List[Suggestion]

Example​

circuit = QuantumCircuit(4, 4)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.cx(2, 3)
circuit.barrier()
circuit.ry(0.5, 0)
circuit.ry(0.5, 1)
circuit.measure_all()

suggestions = synapsex.suggest_optimizations(
circuit,
target_backend="ibm_brisbane",
optimization_goal="fidelity"
)

for s in suggestions:
print(f"Suggestion: {s.title}")
print(f"Description: {s.description}")
print(f"Expected improvement: {s.improvement_percent}%")
print(f"Confidence: {s.confidence}")
print("---")

Output:

Suggestion: Parallelize single-qubit gates
Description: The RY gates on qubits 0 and 1 can be executed simultaneously
Expected improvement: 15%
Confidence: high
---
Suggestion: Use native gate decomposition
Description: Replace CX chain with optimized ZZ interactions for IBM hardware
Expected improvement: 25%
Confidence: medium
---

Apply Suggestions​

# Apply a specific suggestion
optimized = synapsex.apply_suggestion(circuit, suggestions[0])

# Apply all high-confidence suggestions
optimized = synapsex.apply_all_suggestions(
circuit,
suggestions,
min_confidence="high"
)

Error Analysis​

Analyze quantum execution errors and get mitigation strategies.

analyze_errors()​

analysis = synapsex.analyze_errors(
circuit: QuantumCircuit,
result: Result,
backend: str = None
) -> ErrorAnalysis

Example​

# Run circuit
job = client.run(circuit, backend="ibm_brisbane", shots=10000)
result = job.result()

# Analyze errors
analysis = synapsex.analyze_errors(
circuit,
result,
backend="ibm_brisbane"
)

print(f"Estimated fidelity: {analysis.estimated_fidelity}")
print(f"Dominant error: {analysis.dominant_error_type}")
print(f"Explanation: {analysis.explanation}")

for mitigation in analysis.mitigations:
print(f"Mitigation: {mitigation.strategy}")
print(f"Expected improvement: {mitigation.improvement}")

Output:

Estimated fidelity: 0.87
Dominant error: readout
Explanation: The circuit shows significant readout errors on qubits 2 and 3,
likely due to state leakage. The CNOT chain creates an entangled state that
is susceptible to T1 decay during the final measurement.

Mitigation: Readout error mitigation
Expected improvement: 5-8%

Mitigation: Dynamical decoupling
Expected improvement: 3-5%

Apply Error Mitigation​

# Apply recommended mitigation
mitigated_result = synapsex.apply_error_mitigation(
circuit,
result,
strategy="readout_correction"
)

print(f"Original counts: {result.counts}")
print(f"Mitigated counts: {mitigated_result.counts}")

Result Interpretation​

Get human-readable explanations of quantum results.

interpret_results()​

interpretation = synapsex.interpret_results(
circuit: QuantumCircuit,
result: Result,
context: str = None
) -> Interpretation

Example​

# Bell state measurement
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure_all()

job = client.run(circuit, backend="ibm_brisbane", shots=1000)
result = job.result()

interpretation = synapsex.interpret_results(
circuit,
result,
context="I'm trying to create and verify quantum entanglement"
)

print(interpretation.summary)
print("\nDetailed explanation:")
print(interpretation.detailed)

Output:

Summary: The circuit successfully created a Bell state with 95% fidelity.
The results show strong correlation between qubits.

Detailed explanation:
Your circuit creates the Bell state |Φ+⟩ = (|00⟩ + |11⟩)/√2. The measurement
results show:
- |00⟩: 48.5% (expected: 50%)
- |11⟩: 49.2% (expected: 50%)
- |01⟩: 1.2% (error)
- |10⟩: 1.1% (error)

The high correlation (97.7% in {00, 11}) confirms quantum entanglement.
The small percentage in |01⟩ and |10⟩ represents hardware noise.
This is consistent with typical IBM Quantum performance.

Hybrid Quantum-Classical Workflows​

Combine SynapseX AI with QCOS quantum execution.

Example: AI-Guided VQE​

from softqcos.algorithms import VQE
from softqcos.synapsex import QuantumAdvisor

# Initialize advisor
advisor = QuantumAdvisor(synapsex)

# Define problem
problem = "Find the ground state energy of H2 at bond length 0.74 Γ…"

# Get AI recommendations
recommendations = advisor.recommend_approach(problem)
print(f"Recommended algorithm: {recommendations.algorithm}")
print(f"Recommended backend: {recommendations.backend}")
print(f"Estimated shots needed: {recommendations.shots}")

# Generate optimized ansatz
ansatz = synapsex.generate_circuit(
f"Create an optimal VQE ansatz for {problem}",
target_backend=recommendations.backend
)

# Run VQE
vqe = VQE(
ansatz=ansatz,
optimizer="COBYLA",
backend=recommendations.backend,
shots=recommendations.shots
)

result = vqe.run(client)

# Interpret results
interpretation = synapsex.interpret_results(
ansatz,
result,
context=problem
)

print(f"\nGround state energy: {result.eigenvalue}")
print(f"\nInterpretation: {interpretation.summary}")

Example: Iterative Circuit Design​

# Start with a description
description = "Create a quantum circuit for portfolio optimization with 4 assets"

# Generate initial circuit
circuit = synapsex.generate_circuit(description)

# Iterative refinement loop
for iteration in range(3):
# Simulate
result = client.simulate(circuit, shots=10000)

# Analyze
analysis = synapsex.analyze_errors(circuit, result, "ibm_brisbane")

# Get suggestions
suggestions = synapsex.suggest_optimizations(
circuit,
target_backend="ibm_brisbane",
optimization_goal="fidelity"
)

if not suggestions or analysis.estimated_fidelity > 0.95:
break

# Apply best suggestion
circuit = synapsex.apply_suggestion(circuit, suggestions[0])
print(f"Iteration {iteration + 1}: Fidelity = {analysis.estimated_fidelity}")

print("Final circuit ready for quantum execution")

Chat Interface​

Interactive chat for quantum computing assistance.

Example: Jupyter Integration​

from softqcos.synapsex import QuantumChat

chat = QuantumChat(synapsex)

# Interactive session
response = chat.ask("What's the best way to implement quantum phase estimation?")
print(response.text)

# With context
response = chat.ask(
"How can I improve this circuit's fidelity?",
context={"circuit": my_circuit, "backend": "ibm_brisbane"}
)
print(response.text)

# Generate code
response = chat.ask("Show me code for a 3-qubit Toffoli gate")
print(response.code)

API Reference​

SynapseXClient​

class SynapseXClient:
def __init__(self, qcos_client: QCOSClient)

def generate_circuit(
self,
description: str,
num_qubits: int = None,
target_backend: str = None,
return_parameters: bool = False
) -> QuantumCircuit

def suggest_optimizations(
self,
circuit: QuantumCircuit,
target_backend: str = None,
optimization_goal: str = "depth"
) -> List[Suggestion]

def analyze_errors(
self,
circuit: QuantumCircuit,
result: Result,
backend: str = None
) -> ErrorAnalysis

def interpret_results(
self,
circuit: QuantumCircuit,
result: Result,
context: str = None
) -> Interpretation

Plan Requirements​

FeatureFreeProHybridEnterprise
Circuit GenerationβŒβœ… Basicβœ… Fullβœ… Full
Optimization Suggestions❌10/dayUnlimitedUnlimited
Error AnalysisβŒβœ…βœ…βœ…
Result InterpretationβŒβœ…βœ…βœ…
Custom Fine-tuningβŒβŒβŒβœ…

Next Steps​