๐ง Model Evolution & Benchmarks
Enterprise-grade AI models trained for quantum computing, molecular science, and scientific research
SynapseX models represent the cutting edge of domain-specialized AI, combining state-of-the-art foundation models with proprietary training on quantum computing, molecular design, and scientific datasets.
๐ Current Model Lineupโ
| Model | Parameters | Context | Specialty | Status |
|---|---|---|---|---|
| SynapseX-Qwen25-14B | 14.7B | 128K | Quantum + Molecular | ๐ Latest |
| SynapseX-Qwen25-7B | 7.6B | 128K | General Scientific | โ Production |
| SynapseX-Qwen25-3B | 3B | 32K | Edge Deployment | โ Production |
๐ SynapseX-Qwen25-14B (December 2025)โ
Our flagship model, trained on LUMI supercomputer with 764,842 curated examples across quantum computing, molecular science, and advanced reasoning domains.
Training Data Compositionโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Premium Training Dataset v1.0 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Total Examples: 764,842 โ
โ Training Tokens: ~1.2B โ
โ Quality Filter: Top 85% by density score โ
โ Deduplication: MinHash + semantic clustering โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
| Category | Examples | % | Description |
|---|---|---|---|
| Synthesis Planning | 76,923 | 10.1% | Molecular synthesis routes |
| Mathematics | 76,923 | 10.1% | Advanced mathematical reasoning |
| Molecular Science | 76,923 | 10.1% | Molecular structure & properties |
| General Knowledge | 76,923 | 10.1% | Broad scientific knowledge |
| Chemical Reactions | 76,923 | 10.1% | Reaction mechanisms |
| Molecular Design | 76,923 | 10.1% | Drug design & optimization |
| Advanced Coding | 76,923 | 10.1% | Python, algorithms, HPC |
| Scientific Research | 76,923 | 10.1% | Research methodology |
| Physics | 76,918 | 10.1% | Quantum mechanics, condensed matter |
| Quantum Computing | 36,451 | 4.8% | Circuits, algorithms, error correction |
| Python Coding | 34,478 | 4.5% | Scientific Python |
| Math Reasoning | 1,570 | 0.2% | Step-by-step solutions |
| Quantum Genomics | 41 | 0.0% | Specialized domain |
Quality Metricsโ
| Metric | Value | Industry Benchmark |
|---|---|---|
| Average Instruction Length | 598.2 chars | ~400 chars |
| Average Output Length | 987.3 chars | ~600 chars |
| Technical Density | 0.78% | ~0.5% |
| Information Density | 42.7% | ~30% |
| Examples with Code | 21,795 | - |
| With System Prompts | 371,107 (48.5%) | - |
Data Sourcesโ
| Source | Examples | Quality |
|---|---|---|
| Physics StackExchange | 76,918 | โญโญโญโญโญ |
| Quantum StackExchange | 33,468 | โญโญโญโญโญ |
| Mol-Instructions (Retro) | 76,923 | โญโญโญโญโญ |
| Mol-Instructions (Design) | 76,923 | โญโญโญโญโญ |
| MetaMath | 76,923 | โญโญโญโญ |
| Scientific Papers | 46,152 | โญโญโญโญ |
| Code-122K | 43,220 | โญโญโญโญ |
| OpenOrca | 76,923 | โญโญโญ |
| Python Alpaca | 34,478 | โญโญโญ |
| arXiv Summarization | 30,771 | โญโญโญโญ |
| EvolInstruct Code | 33,703 | โญโญโญโญ |
| Quantum FineWeb | 2,799 | โญโญโญโญโญ |
| GSM8K | 1,570 | โญโญโญโญ โญ |
๐ Benchmark Resultsโ
Standard LLM Benchmarksโ
We evaluate against industry-standard benchmarks to ensure competitive general capabilities:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ BENCHMARK COMPARISON โ
โโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโค
โ Benchmark โ SynapseX-14Bโ Qwen2.5-14B โ Llama-3.1-8Bโ GPT-4o-mini โ
โโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโค
โ MMLU (5-shot) โ 79.2% โ 79.0% โ 69.4% โ 82.0% โ
โ GSM8K โ 88.4% โ 85.7% โ 76.6% โ 93.2% โ
โ HumanEval โ 78.3% โ 75.6% โ 62.8% โ 87.2% โ
โ MT-Bench โ 8.35 โ 8.07 โ 8.00 โ 8.5 โ
โโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโ
Domain-Specific Benchmarksโ
Where SynapseX truly excels - specialized scientific domains:
๐ฌ Quantum Computingโ
| Task | SynapseX-14B | Qwen2.5-14B | Improvement |
|---|---|---|---|
| Circuit Design | 84.2% | 62.1% | +35.6% |
| Error Correction | 76.8% | 51.3% | +49.7% |
| Algorithm Explanation | 89.1% | 71.4% | +24.8% |
| Qubit State Calculation | 91.3% | 68.9% | +32.5% |
| Gate Decomposition | 82.7% | 59.2% | +39.7% |
๐งฌ Molecular Scienceโ
| Task | SynapseX-14B | Qwen2.5-14B | Improvement |
|---|---|---|---|
| SMILES Prediction | 87.4% | 64.2% | +36.1% |
| Retrosynthesis | 79.8% | 52.7% | +51.4% |
| Property Prediction | 83.6% | 61.8% | +35.3% |
| Reaction Mechanism | 85.2% | 58.3% | +46.1% |
| Drug-Target Interaction | 76.9% | 48.5% | +58.6% |
โ๏ธ Physicsโ
| Task | SynapseX-14B | Qwen2.5-14B | Improvement |
|---|---|---|---|
| Quantum Mechanics | 86.7% | 72.1% | +20.2% |
| Statistical Mechanics | 81.4% | 65.3% | +24.7% |
| Condensed Matter | 78.9% | 59.8% | +32.0% |
| Electrodynamics | 84.2% | 71.6% | +17.6% |
โก Performance Benchmarksโ
Inference Speedโ
Tested on AMD Instinct MI300X (LUMI) and NVIDIA A100 80GB:
| Metric | MI300X | A100-80GB | H100 |
|---|---|---|---|
| Tokens/sec (batch=1) | 120 | 85 | 142 |
| Tokens/sec (batch=8) | 680 | 420 | 890 |
| First Token Latency | 45ms | 62ms | 38ms |
| P95 Latency | 180ms | 240ms | 156ms |
| Cold Start | 8s | 12s | 6s |
Comparison with Cloud Providersโ
โโโโโโโโโโโโโโโ โโโโฌโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโ
โ Provider โ First Token โ P95 Latency โ Throughput โ Cold Start โ
โโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโค
โ AWS Bedrock โ 890ms โ 1,560ms โ 42 tok/s โ 180s โ
โ GCP Vertex AI โ 780ms โ 1,350ms โ 48 tok/s โ 165s โ
โ Azure OpenAI โ 620ms โ 980ms โ 72 tok/s โ 45s โ
โ Replicate โ 650ms โ 1,100ms โ 65 tok/s โ 45s โ
โ Together.ai โ 520ms โ 890ms โ 85 tok/s โ 12s โ
โ **SynapseX** โ **380ms** โ **680ms** โ **120 tok/s**โ **8s** โ
โโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโ โโโโโโโโดโโโโโโโโโโโโโโโ
โจ SynapseX Advantage:
โข 27-59% lower latency
โข 41-185% higher throughput
โข 88-96% faster cold start
๐ Model Evolution Roadmapโ
Version Historyโ
timeline
title SynapseX Model Evolution
2024-Q4 : SynapseX-7B v0.1
: Initial SFT on quantum datasets
: 50K training examples
2025-Q1 : SynapseX-7B v1.0
: DPO training added
: Quantum reranker integration
: 150K training examples
2025-Q2 : SynapseX-7B v1.5
: Multi-domain expansion
: Molecular science data
: 350K training examples
2025-Q3 : SynapseX-14B v1.0
: Scale to 14B parameters
: LUMI HPC training
: 500K training examples
2025-Q4 : SynapseX-14B v2.0
: Premium dataset (765K)
: Physics + Quantum boost
: Production deployment
Current: v2.0 (December 2025)โ
Key Improvements:
- โ 12x more quantum computing content (36,451 vs 2,983 examples)
- โ Physics domain added (76,918 examples from StackExchange)
- โ Quality filtering (top 85% by density score)
- โ Deduplication (17% duplicate removal)
- โ Balanced categories (max 10.1% per category)
Upcoming: v2.5 (Q1 2026)โ
Planned Improvements:
- ๐ฏ Quantum content to 15% (additional curated sources)
- ๐ฏ Reasoning enhancement via extended thinking
- ๐ฏ Multi-turn optimization for complex workflows
- ๐ฏ Tool use integration (MCP protocol)
- ๐ฏ Code execution capability
Future: v3.0 (Q2 2026)โ
Vision:
- ๐ฎ Quantum-native architecture exploration
- ๐ฎ 32B parameter model for enterprise
- ๐ฎ Real-time learning from feedback
- ๐ฎ Multi-modal (circuits + diagrams)
๐งช Evaluation Methodologyโ
Benchmark Suiteโ
We use a comprehensive evaluation suite covering:
-
General Capabilities
- MMLU (5-shot): Multi-task language understanding
- GSM8K: Mathematical reasoning
- HumanEval: Code generation
- MT-Bench: Multi-turn conversation quality
-
Domain Expertise
- QuantumBench: Custom quantum computing evaluation
- MolecularQA: Molecular science Q&A
- PhysicsProblems: Graduate-level physics
-
Production Metrics
- Latency (P50, P95, P99)
- Throughput (tokens/sec)
- Cold start time
- Memory efficiency
Running Benchmarksโ
# Run full benchmark suite
python scripts/eval/run_quality_benchmarks.py \
--api-url "https://api.synapsex.ai" \
--api-key "$SYNAPSEX_API_KEY" \
--model "synapsex-14b" \
--benchmarks all \
--samples 100 \
--output artifacts/benchmark_results.json
Quality Metricsโ
Every training run produces a quality report:
{
"total_examples": 764842,
"metrics": {
"avg_instruction_length": 598.2,
"avg_output_length": 987.3,
"avg_technical_density": 0.0078,
"avg_information_density": 0.4272,
"code_examples": 21795,
"with_system_prompts": 371107
}
}
๐ Training Infrastructureโ
LUMI Supercomputerโ
Our models are trained on LUMI, Europe's most powerful supercomputer:
| Spec | Value |
|---|---|
| GPU Type | AMD Instinct MI250X |
| GPU Memory | 128GB HBM2e per GPU |
| Interconnect | Slingshot-11 (200 Gbps) |
| Training Framework | PyTorch 2.5 + DeepSpeed |
| Precision | BF16 mixed precision |
| LoRA Rank | 128 (efficient fine-tuning) |
Training Configurationโ
# SFT Configuration
model:
name: Qwen/Qwen2.5-14B-Instruct
max_length: 8192
lora:
rank: 128
alpha: 256
target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"]
training:
epochs: 3
batch_size: 4
gradient_accumulation: 8
learning_rate: 2e-5
warmup_ratio: 0.03
optimizer: adamw_torch
deepspeed:
stage: 2
offload_optimizer: true
๐ Citationโ
If you use SynapseX models in your research, please cite:
@software{synapsex2025,
title = {SynapseX: Domain-Specialized Language Models for Quantum Computing and Molecular Science},
author = {SoftQuantus Team},
year = {2025},
version = {2.0},
url = {https://synapsex.ai},
note = {Trained on LUMI supercomputer with 764K curated examples}
}
๐ Related Resourcesโ
- API Reference - Full API documentation
- SDK Quickstart - Get started in 5 minutes
- QuantumLockโข - Secure quantum operations
- Changelog - Latest updates
Built with โค๏ธ by SoftQuantus
Advancing AI for Quantum Computing and Molecular Science