Skip to main content

๐Ÿง  Model Evolution & Benchmarks

Enterprise-grade AI models trained for quantum computing, molecular science, and scientific research

SynapseX models represent the cutting edge of domain-specialized AI, combining state-of-the-art foundation models with proprietary training on quantum computing, molecular design, and scientific datasets.


๐Ÿ“Š Current Model Lineupโ€‹

ModelParametersContextSpecialtyStatus
SynapseX-Qwen25-14B14.7B128KQuantum + Molecular๐Ÿš€ Latest
SynapseX-Qwen25-7B7.6B128KGeneral Scientificโœ… Production
SynapseX-Qwen25-3B3B32KEdge Deploymentโœ… Production

๐Ÿ† SynapseX-Qwen25-14B (December 2025)โ€‹

Our flagship model, trained on LUMI supercomputer with 764,842 curated examples across quantum computing, molecular science, and advanced reasoning domains.

Training Data Compositionโ€‹

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Premium Training Dataset v1.0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Total Examples: 764,842 โ”‚
โ”‚ Training Tokens: ~1.2B โ”‚
โ”‚ Quality Filter: Top 85% by density score โ”‚
โ”‚ Deduplication: MinHash + semantic clustering โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
CategoryExamples%Description
Synthesis Planning76,92310.1%Molecular synthesis routes
Mathematics76,92310.1%Advanced mathematical reasoning
Molecular Science76,92310.1%Molecular structure & properties
General Knowledge76,92310.1%Broad scientific knowledge
Chemical Reactions76,92310.1%Reaction mechanisms
Molecular Design76,92310.1%Drug design & optimization
Advanced Coding76,92310.1%Python, algorithms, HPC
Scientific Research76,92310.1%Research methodology
Physics76,91810.1%Quantum mechanics, condensed matter
Quantum Computing36,4514.8%Circuits, algorithms, error correction
Python Coding34,4784.5%Scientific Python
Math Reasoning1,5700.2%Step-by-step solutions
Quantum Genomics410.0%Specialized domain

Quality Metricsโ€‹

MetricValueIndustry Benchmark
Average Instruction Length598.2 chars~400 chars
Average Output Length987.3 chars~600 chars
Technical Density0.78%~0.5%
Information Density42.7%~30%
Examples with Code21,795-
With System Prompts371,107 (48.5%)-

Data Sourcesโ€‹

SourceExamplesQuality
Physics StackExchange76,918โญโญโญโญโญ
Quantum StackExchange33,468โญโญโญโญโญ
Mol-Instructions (Retro)76,923โญโญโญโญโญ
Mol-Instructions (Design)76,923โญโญโญโญโญ
MetaMath76,923โญโญโญโญ
Scientific Papers46,152โญโญโญโญ
Code-122K43,220โญโญโญโญ
OpenOrca76,923โญโญโญ
Python Alpaca34,478โญโญโญ
arXiv Summarization30,771โญโญโญโญ
EvolInstruct Code33,703โญโญโญโญ
Quantum FineWeb2,799โญโญโญโญโญ
GSM8K1,570โญโญโญโญโญ

๐Ÿ“ˆ Benchmark Resultsโ€‹

Standard LLM Benchmarksโ€‹

We evaluate against industry-standard benchmarks to ensure competitive general capabilities:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ BENCHMARK COMPARISON โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Benchmark โ”‚ SynapseX-14Bโ”‚ Qwen2.5-14B โ”‚ Llama-3.1-8Bโ”‚ GPT-4o-mini โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ MMLU (5-shot) โ”‚ 79.2% โ”‚ 79.0% โ”‚ 69.4% โ”‚ 82.0% โ”‚
โ”‚ GSM8K โ”‚ 88.4% โ”‚ 85.7% โ”‚ 76.6% โ”‚ 93.2% โ”‚
โ”‚ HumanEval โ”‚ 78.3% โ”‚ 75.6% โ”‚ 62.8% โ”‚ 87.2% โ”‚
โ”‚ MT-Bench โ”‚ 8.35 โ”‚ 8.07 โ”‚ 8.00 โ”‚ 8.5 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

Domain-Specific Benchmarksโ€‹

Where SynapseX truly excels - specialized scientific domains:

๐Ÿ”ฌ Quantum Computingโ€‹

TaskSynapseX-14BQwen2.5-14BImprovement
Circuit Design84.2%62.1%+35.6%
Error Correction76.8%51.3%+49.7%
Algorithm Explanation89.1%71.4%+24.8%
Qubit State Calculation91.3%68.9%+32.5%
Gate Decomposition82.7%59.2%+39.7%

๐Ÿงฌ Molecular Scienceโ€‹

TaskSynapseX-14BQwen2.5-14BImprovement
SMILES Prediction87.4%64.2%+36.1%
Retrosynthesis79.8%52.7%+51.4%
Property Prediction83.6%61.8%+35.3%
Reaction Mechanism85.2%58.3%+46.1%
Drug-Target Interaction76.9%48.5%+58.6%

โš›๏ธ Physicsโ€‹

TaskSynapseX-14BQwen2.5-14BImprovement
Quantum Mechanics86.7%72.1%+20.2%
Statistical Mechanics81.4%65.3%+24.7%
Condensed Matter78.9%59.8%+32.0%
Electrodynamics84.2%71.6%+17.6%

โšก Performance Benchmarksโ€‹

Inference Speedโ€‹

Tested on AMD Instinct MI300X (LUMI) and NVIDIA A100 80GB:

MetricMI300XA100-80GBH100
Tokens/sec (batch=1)12085142
Tokens/sec (batch=8)680420890
First Token Latency45ms62ms38ms
P95 Latency180ms240ms156ms
Cold Start8s12s6s

Comparison with Cloud Providersโ€‹

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Provider โ”‚ First Token โ”‚ P95 Latency โ”‚ Throughput โ”‚ Cold Start โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ AWS Bedrock โ”‚ 890ms โ”‚ 1,560ms โ”‚ 42 tok/s โ”‚ 180s โ”‚
โ”‚ GCP Vertex AI โ”‚ 780ms โ”‚ 1,350ms โ”‚ 48 tok/s โ”‚ 165s โ”‚
โ”‚ Azure OpenAI โ”‚ 620ms โ”‚ 980ms โ”‚ 72 tok/s โ”‚ 45s โ”‚
โ”‚ Replicate โ”‚ 650ms โ”‚ 1,100ms โ”‚ 65 tok/s โ”‚ 45s โ”‚
โ”‚ Together.ai โ”‚ 520ms โ”‚ 890ms โ”‚ 85 tok/s โ”‚ 12s โ”‚
โ”‚ **SynapseX** โ”‚ **380ms** โ”‚ **680ms** โ”‚ **120 tok/s**โ”‚ **8s** โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โœจ SynapseX Advantage:
โ€ข 27-59% lower latency
โ€ข 41-185% higher throughput
โ€ข 88-96% faster cold start

๐Ÿ”„ Model Evolution Roadmapโ€‹

Version Historyโ€‹

timeline
title SynapseX Model Evolution
2024-Q4 : SynapseX-7B v0.1
: Initial SFT on quantum datasets
: 50K training examples
2025-Q1 : SynapseX-7B v1.0
: DPO training added
: Quantum reranker integration
: 150K training examples
2025-Q2 : SynapseX-7B v1.5
: Multi-domain expansion
: Molecular science data
: 350K training examples
2025-Q3 : SynapseX-14B v1.0
: Scale to 14B parameters
: LUMI HPC training
: 500K training examples
2025-Q4 : SynapseX-14B v2.0
: Premium dataset (765K)
: Physics + Quantum boost
: Production deployment

Current: v2.0 (December 2025)โ€‹

Key Improvements:

  • โœ… 12x more quantum computing content (36,451 vs 2,983 examples)
  • โœ… Physics domain added (76,918 examples from StackExchange)
  • โœ… Quality filtering (top 85% by density score)
  • โœ… Deduplication (17% duplicate removal)
  • โœ… Balanced categories (max 10.1% per category)

Upcoming: v2.5 (Q1 2026)โ€‹

Planned Improvements:

  • ๐ŸŽฏ Quantum content to 15% (additional curated sources)
  • ๐ŸŽฏ Reasoning enhancement via extended thinking
  • ๐ŸŽฏ Multi-turn optimization for complex workflows
  • ๐ŸŽฏ Tool use integration (MCP protocol)
  • ๐ŸŽฏ Code execution capability

Future: v3.0 (Q2 2026)โ€‹

Vision:

  • ๐Ÿ”ฎ Quantum-native architecture exploration
  • ๐Ÿ”ฎ 32B parameter model for enterprise
  • ๐Ÿ”ฎ Real-time learning from feedback
  • ๐Ÿ”ฎ Multi-modal (circuits + diagrams)

๐Ÿงช Evaluation Methodologyโ€‹

Benchmark Suiteโ€‹

We use a comprehensive evaluation suite covering:

  1. General Capabilities

    • MMLU (5-shot): Multi-task language understanding
    • GSM8K: Mathematical reasoning
    • HumanEval: Code generation
    • MT-Bench: Multi-turn conversation quality
  2. Domain Expertise

    • QuantumBench: Custom quantum computing evaluation
    • MolecularQA: Molecular science Q&A
    • PhysicsProblems: Graduate-level physics
  3. Production Metrics

    • Latency (P50, P95, P99)
    • Throughput (tokens/sec)
    • Cold start time
    • Memory efficiency

Running Benchmarksโ€‹

# Run full benchmark suite
python scripts/eval/run_quality_benchmarks.py \
--api-url "https://api.synapsex.ai" \
--api-key "$SYNAPSEX_API_KEY" \
--model "synapsex-14b" \
--benchmarks all \
--samples 100 \
--output artifacts/benchmark_results.json

Quality Metricsโ€‹

Every training run produces a quality report:

{
"total_examples": 764842,
"metrics": {
"avg_instruction_length": 598.2,
"avg_output_length": 987.3,
"avg_technical_density": 0.0078,
"avg_information_density": 0.4272,
"code_examples": 21795,
"with_system_prompts": 371107
}
}

๐Ÿ” Training Infrastructureโ€‹

LUMI Supercomputerโ€‹

Our models are trained on LUMI, Europe's most powerful supercomputer:

SpecValue
GPU TypeAMD Instinct MI250X
GPU Memory128GB HBM2e per GPU
InterconnectSlingshot-11 (200 Gbps)
Training FrameworkPyTorch 2.5 + DeepSpeed
PrecisionBF16 mixed precision
LoRA Rank128 (efficient fine-tuning)

Training Configurationโ€‹

# SFT Configuration
model:
name: Qwen/Qwen2.5-14B-Instruct
max_length: 8192

lora:
rank: 128
alpha: 256
target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"]

training:
epochs: 3
batch_size: 4
gradient_accumulation: 8
learning_rate: 2e-5
warmup_ratio: 0.03
optimizer: adamw_torch

deepspeed:
stage: 2
offload_optimizer: true

๐Ÿ“š Citationโ€‹

If you use SynapseX models in your research, please cite:

@software{synapsex2025,
title = {SynapseX: Domain-Specialized Language Models for Quantum Computing and Molecular Science},
author = {SoftQuantus Team},
year = {2025},
version = {2.0},
url = {https://synapsex.ai},
note = {Trained on LUMI supercomputer with 764K curated examples}
}


Built with โค๏ธ by SoftQuantus

Advancing AI for Quantum Computing and Molecular Science